Optical Interconnects on Processors?
I Hate Predicting the Future

- The only guarantee is:
 - The future will happen, and you will be wrong

- So I will initially avoid saying WHETHER it will happen

- Focus instead on the issues that need to be solved

- And potential advantages and non-advantages
My Biggest Issue

- Is basically about packaging:
 - Need three surfaces
 - Power in
 - Heat Out
 - Light In/Out

- Light needs to travel through
 - Power, or heat sink

- Problem is not the vias
 - It is turning the corner
Signal Velocity for Repeated wires

- Under SIA scaling, pretty constant over many generations
- Under conservative scaling, slow change at sub-0.1µm techs
 - Makes wire delay increase slowly

![Graph showing signal velocity for repeated wires under SIA and conservative scaling across different feature sizes.]
Observations: On Chip Wires

• I feel sorry for the maligned VLSI wire
 – It really is not that bad
• If you scale the wires
 – You get more of them per mm
 – With repeaters the delay/mm scales slowly
 • Less than 1ns across a chip
 – Bandwidth per wire scales with technology
 – Total bandwidth/mm scales as $1/\alpha^2$
 – Delay across the chip is roughly constant in ps
• If you only need a few wires, $O(1000)$
 – You can make them thicker and wider
 – Velocity goes up
Observations: Off Chip Wires

• Behind each photonic device is an electronic link
 – Need to do data slicing, clock recovery on input
 – Need to drive VCSELs, or modulator
 – So speed/power is going to be limited by electronics
• Can make electrical links run at 10+Gb/s
 – Have demonstrations today
 – But have tremendous issues with loss in package and wire
 • Equalization works, but takes area and power

• So it seems like it comes down to packaging
 – Is optics easier to package than high quality package?
 – How far / how many connectors does the signal go through?