Panel Discussion on Skills and Theory – How to Keep Up Laboratory Courses for Electrical Engineering

Byung Kook Kim
Dept. of EECS
Korea Advanced Institute of Science and Technology
bkkim@ee.kaist.ac.kr
Contents

- Introduction
- Lab Courses in EE, KAIST
- Future Improvements
- Conclusion
Introduction

■ Education
 ■ Flood of information
 ■ Traditional, computer, bio & nano, ...
 ■ Physical and virtual knowledge
 ■ Education to cultivate T engineers
 ■ Width
 ■ Fundamental theoretical knowledge for wide applicability
 ■ Virtual knowledge via Internet
 ■ Depth
 ■ Hands-on experience
 ■ Design capability
Introduction (II)

Requirements for EE laboratory courses

- Assistant to theory
 - Verify theory
 - Enhance understanding

- Design capability
 - Analysis and synthesis
 - Cooperation and teamwork

- Adaptability for the future
II. Lab Courses in EE, KAIST

- **Basic structure**
 - Theoretic courses 3-0-3
 - Lab courses 1-6-3
 - Two omnibus style lab courses for Sophomore
 - Electronics Lab I
 - Electronics Lab II
 - One selective lab course for Junior
 - Applied Electronics Lab
 - Two design lab courses for Senior
 - Electronic Design Lab
 - Project Lab
Lab Courses in EE, KAIST (II)

- Sophomore lab courses
 - EE207 Electronics Lab 1 (1:6:3)
 - Experiments on digital systems and circuit theory
 - Circuit theory:
 - Resistor circuits
 - Oscilloscope and phasor
 - Steady-state response to sinusoidal inputs
 - Transient response and operational amplifiers
 - Three-phase circuits
 - Design of passive/active filters
 - Digital system
 - Logic circuits
 - Design of combinational circuits
 - Flip-flops and counters
 - Application of flip-flops
 - Hardware description language
 - EPLD implementation of finite state machine
 - Design
 - Drawing bit images on oscilloscope
Lab Courses in EE, KAIST (III)

Sophomore lab. Courses (cont’d)

EE208 Electronics Lab 2 (1:6:3)
- Experiments on electronic circuits & signals and systems
- Electronic circuits
 - Operational amplifiers
 - Diode
 - Characteristics of bipolar junction transistors
 - Amplifier using BJT
 - Characteristics of MOSFET
 - DC power supply
 - Power amplifier with bipolar-MOSFET
 - Differential amplifier
- Signals and systems
 - A/D and D/A conversion
 - Frequency response of digital linear systems
 - Design of FIR and IIR filters
- Design
 - Design of audio equalizer
Junior lab course: Selective lab course

EE308 Applied Electronics Lab (1:6:3)
- 8 selective units matched for various theoretical classes
 - VLSI design
 - Digital communication
 - Microwave experiment
 - Control engineering
 - Semiconductor IC
 - Digital signal processing
 - Fiber optics
 - Power electronics
- Each student selects 3 units
 - 4 weeks experiment for each unit
- 4 units in the first period and second period
 - 8 units in the last period
Lab Courses in EE, KAIST (V)

- Senior lab courses: Design lab courses
 - EE405 Electronic Design Lab (1:6:3)
 - Design of a specific predefined system – Analog/digital AM radio
 - Analog AM radio
 - Crystal oscillator and PLL
 - Frequency tuning and demodulation
 - IF amplifier and baseband amplifier
 - Antenna design
 - Analog AM radio
 - Digital AM radio
 - Microprocessors and parallel input/output
 - Timer interface
 - Serial interface
 - Analog interface
 - Design of digital AM radio
Senior lab courses (cont’d)

EE406 Project Lab (1:6:3)

- Group forming
 - Students form a group of two
- Selection of project topic
 - Professors suggest topics that can be supported in each graduate research lab
 - Each group of students select a specific topic – suggested or their own
- Presentation of proposal
- Specification and design
- Presentation of interim progress
- Implementation and testing
- Presentation of final result of the project
III. Future Improvements

- Restructuring and enhancing sophomore/junior lab courses
 - Digital electronics lab
 - More design oriented
 - Sequential circuit design project – Coffee vending machine
 - Simple CPU design using AHPL
 - Analog electronics lab
 - Practice vs. theory
 - Noise
 - System programming lab
 - Embedded system programming
 - Embedded Linux
 - Introduction to device drivers
 - Embedded system interfacing
IV. Conclusion

- Appreciate any comments
 - Philosophy
 - Lab course sequence
 - Lab experiment contents
 - Other ...