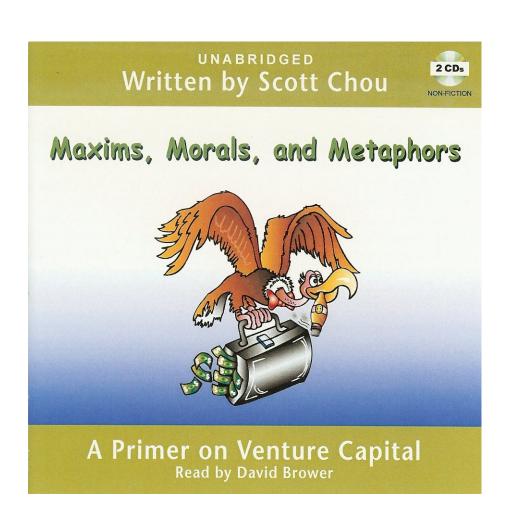

Investing in China Cleantech and Energy

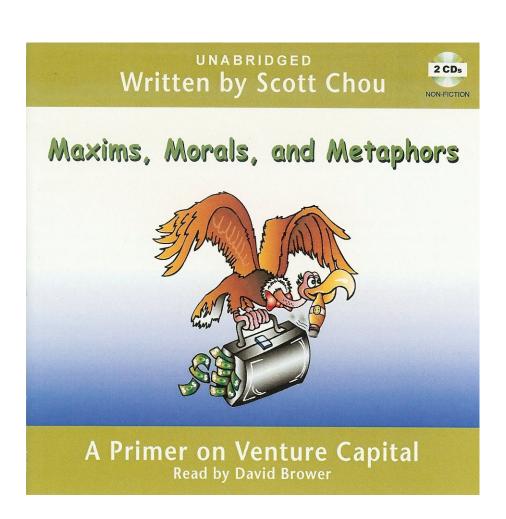
Stanford University Oct 14, 2010

Scott Chou

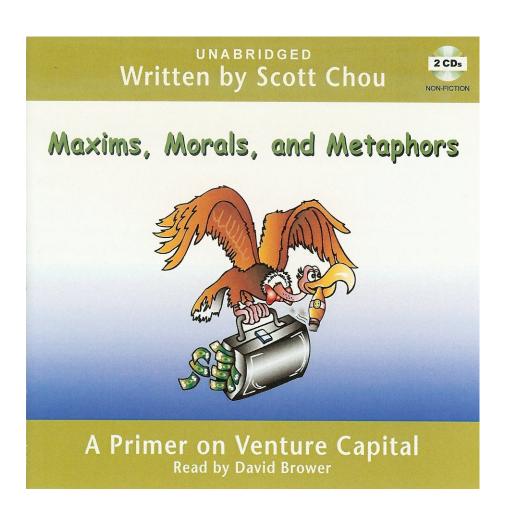

General Partner
Gabriel Venture Partners

- EECS background
- Caltech, Harvard, Stanford
- Kauffman Fellows III
- Chip Designer, Software
 Engineer, Field Application
 Engineer, Manufacturing
 Engineer, General Manager
- Hoffman, Quotron, Bellcore, Poqet Computer, Memory Card Associates, IBM, ICE

When a negotiation seems stalled, remember the toilet paper principle:


Money is like toilet paper, the closer to the end you get, the faster it goes.

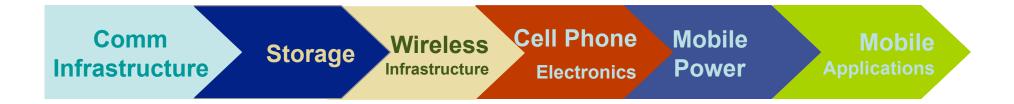
As for having no competition:


If the going gets easy, you may be going downhill.

With regard to white knight M&A:

The light at the end of the tunnel could be a train.

Seed Investors Dilemma



Bridging Death Valley


- Operating Expertise
 - Bridging gaps in management
 - CEO mentorship
- Leveraging China
 - Insourcing to protect intellectual property
 - Reducing distance to Asian customers
- Outsourcing
 - Indian software development
 - Chinese contract manufacturing
- Business Development
 - Facilitate relationships through domain expertise
 - China Venture Partner as shared sales resource

From Telecom to Cleantech

Mobile Power Value Proposition

Rechargeable Batteries for EV & CE

Cleantech Perfect Storm

Self

Serve

Credit

Born

- Rising Fuel Prices
- Reducing dependency on foreign oil
- Global Warming
- Expanding economies in China and India
- Fossil fuel depletion
- Air Pollution
- Avoid funding terrorism

Gas vs. Electric – A Revolution in Progress

Two Primary Fuel Roadblocks

Fuel	Energy Density Watt-Hr/Liter	Refueling Time for 400 miles
Diesel	11300	60 sec
Kerosene	10000	68 sec
Gasoline	9700	70 sec
Aviation Fuel	9160	74 sec
Biodiesel	8500	80 sec
Butanol	8100	84 sec
E10 Gasohol	7800	87 sec
Ethanol	6600	103 sec
Methanol	4400	154 sec
Lithium Ion Battery	400	40 hrs

The PHEV Solution

Ethanol Feedstock

Crop	Gallon	s of ethanol per acre	
Miscanthus	~1500		
Switchgrass	~1150		
Sweet potatoes	1069		
Hybrid poplar	~1000		
Sweet sorghum	900		
Sugar beet	714		A PA
Sugar cane	662		
Corn	370 an	d growing	
Petroleum Partners			

Biodiesel Oil Yield from Crops

Crop	kg oil/ha	litres oil/ha	lbs oil/acre	US gal/acre
soybean	375	446	335	48
safflower	655	779	585	83
sunflowers	800	952	714	102
cocoa (cacao)	863	1026	771	110
peanuts	890	1059	795	113
rapeseed	1000	1190	893	127
olives	1019	1212	910	129
jatropha	1590	1892	1420	202
oil palm	5000	5950	4465	635
Chinese tallow	5500	6545	4912	699
Algae	79832	95,000		10,000

Aurora Algae Algae Nutraceuticals & Biodiesel

