International Institute for Carbon-Neutral Energy Research

Powering the Future Internationalizing Research – PART II of V

P. Sofronis

Kyushu University University of Illinois at Urbana-Champaign

November 7, 2013

New Value Chains and the Rise of Open Innovation in Asia Stanford University

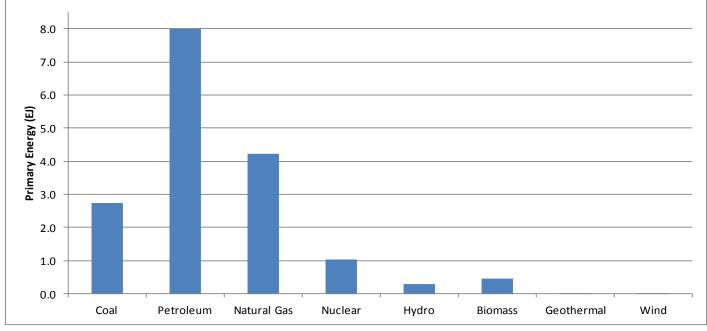
World Trends

- Economic rise of emerging nations and advance of economic globalization
- Fossil fuels continue to be a primary energy source
- Introduction of renewable energy with better performance, reduced cost, and improved stability
- Heating of competition for natural resources , energy and food
- Nuclear power continues to be a major electricity supplier with continuously increasing safety

Japan's Concerns

- Direct and Indirect damage by the East Japan Earthquake and the Fukushima Daiichi Nuclear Power Station
- Decreasing energy self-sufficiency
- Increasing trade deficit due to soaring prices of fossil fuels and increased imports
- No definite pathway to meet the pledge for GHG emission reduction in 2020 or 2030
 - Slash emissions 25% from the 1990 levels, by the year 2020 (abandoned)
 - Slash emissions 80% from the 1990 levels, by the year 2050?
- Rapid spread of low-price imported photovoltaic panels into the Japanese market while the domestic supply is declining
- Long downward trend of industrial competitiveness
- Aging and decreasing population due to low birth rates

Japan's National Energy Policy

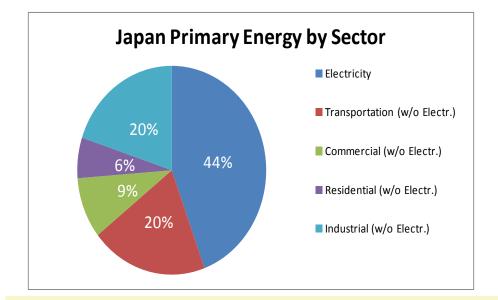


- Reduce total energy consumption by prioritizing funding for
 - efficiency improvement, energy conservation, leveling of supply and demand, etc.
- Facilitate renewable energy introduction into the market
- Promote clean and efficient use of natural gas and coal for stable power supply for the near future
- Promote distributed energy systems to raise total efficiency
- Rebuild mid- to long-term GHG emission reduction scenario and take initiative in the international arena
 - Slash emissions 80% from the 1990 levels, by the year 2050?
- Secure a stable and sustainable energy supply by diversifying energy resources
- Reduce nuclear energy as a supplementary energy, while drawing technology safety lessons from the Fukushima accident
 - Promote R&D on nuclear fuel cycling as a critical factor in order to reach some confident technological conclusion within prescribed time frame
- Actively disseminate quality energy-related technologies to other countries contributing to global disparity adjustment and GHG emission reduction

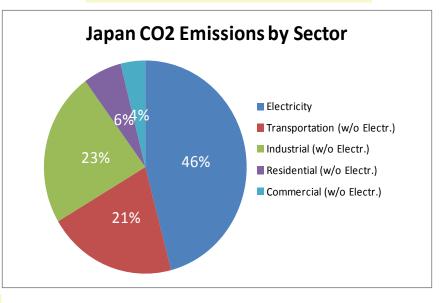
Japan Primary Energy Supply 2010

Primary Energy Source	EJ
Coal	2.7
Petroleum	8.0
Natural Gas	4.2
Nuclear	1.0
Hydro	0.30
Biomass	0.47
Geothermal	0.01
Wind	0.01
Total	16.8

No solar Almost no wind Small biomass


Excludes Products

EDMC Handbook of Energy and Environmental Statistics in Japan (2012) [non-biomass renewables and nuclear adjusted to 100% efficiency]


Japan Energy and CO₂ Emissions 2010

	Primary Energy	Primary	CO ₂ Emissions	Share of CO ₂
Sector	(EJ)	Energy	M tonnes	Emissions
Electricity	7.5	44%	515	46%
Industrial (w/o Electr.)	3.4	20%	263	23%
Transportation (w/o Electr.)	3.4	20%	231	21%
Residential (w/o Electr.)	1.1	6%	69	6%
Commercial (w/o Electr.)	1.6	9%	44	4%
Total	16.8		1,122	100%

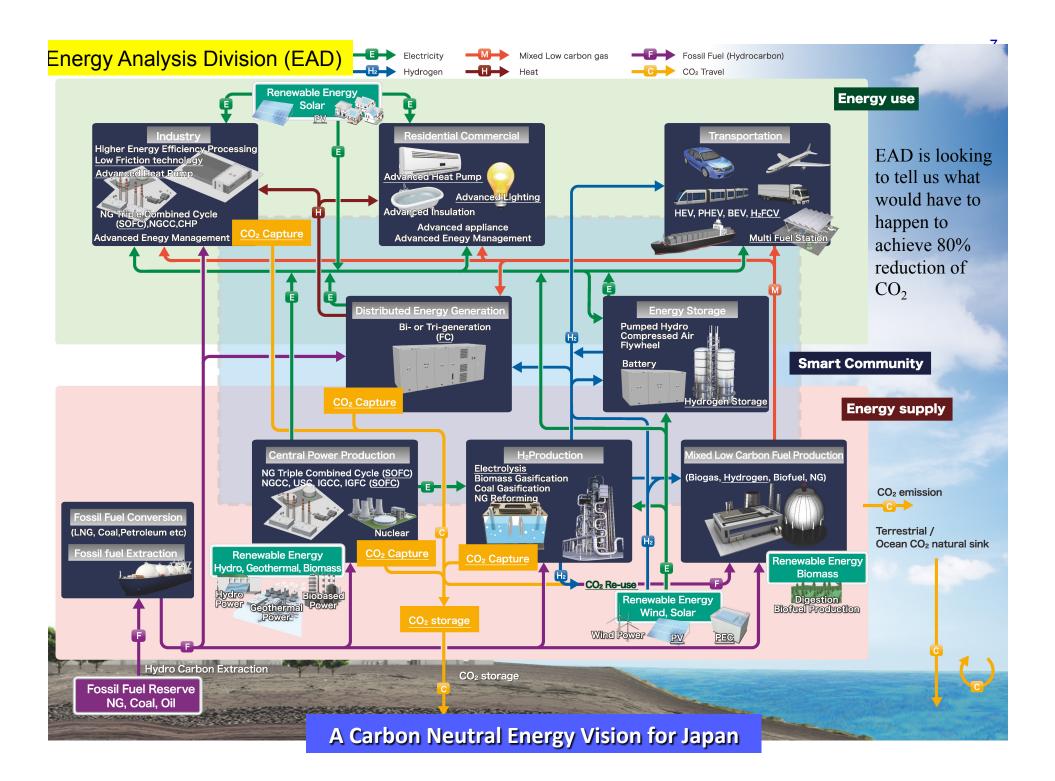
Excludes Products

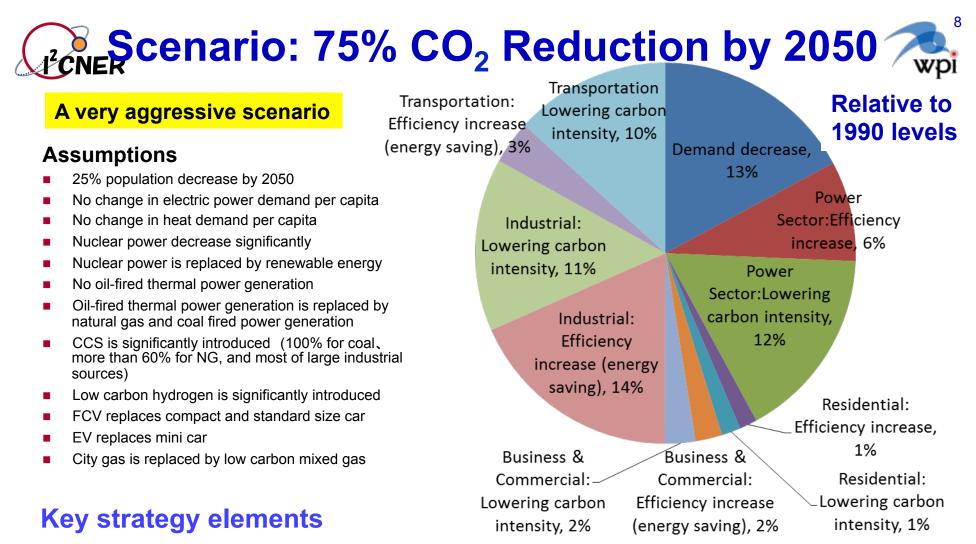
Transportation is all petroleum

Less than 10% of renewables for electricity production

EDMC Handbook of Energy and Environmental Statistics in Japan (2012) [non-biomass renewables and nuclear adjusted to 100% efficiency]

	Current situation		Economically Feasible (*1)	Operating ratio condition(*2)	Economically Feasible (*1)	
`	GW	TWh	EJ	GW	%	EJ
Geothermal	0.54	2.632	0.01	5.73	80	0.14
Hydro (All)	48.11	90.681	0.33	52.41	45	0.74
PV for residential	4.91	0.022	0.00	N/A	60	??
PV for Non-residential				72-102	12	0.33
Wind on-shore	2.56	4.016	0.01	27.37	20	0.17
Wind offshore				14.11	30	0.13
Biomass	N/A	N/A	0.30	N/A	80	??
Renewable Total			0.65			1.52 + ??
Nuclear	48.96	288.23	1.04	??	70	??


(*1)Source: Study of Potential for the Introduction of Renewable Energy by Ministry of Environment (2011)

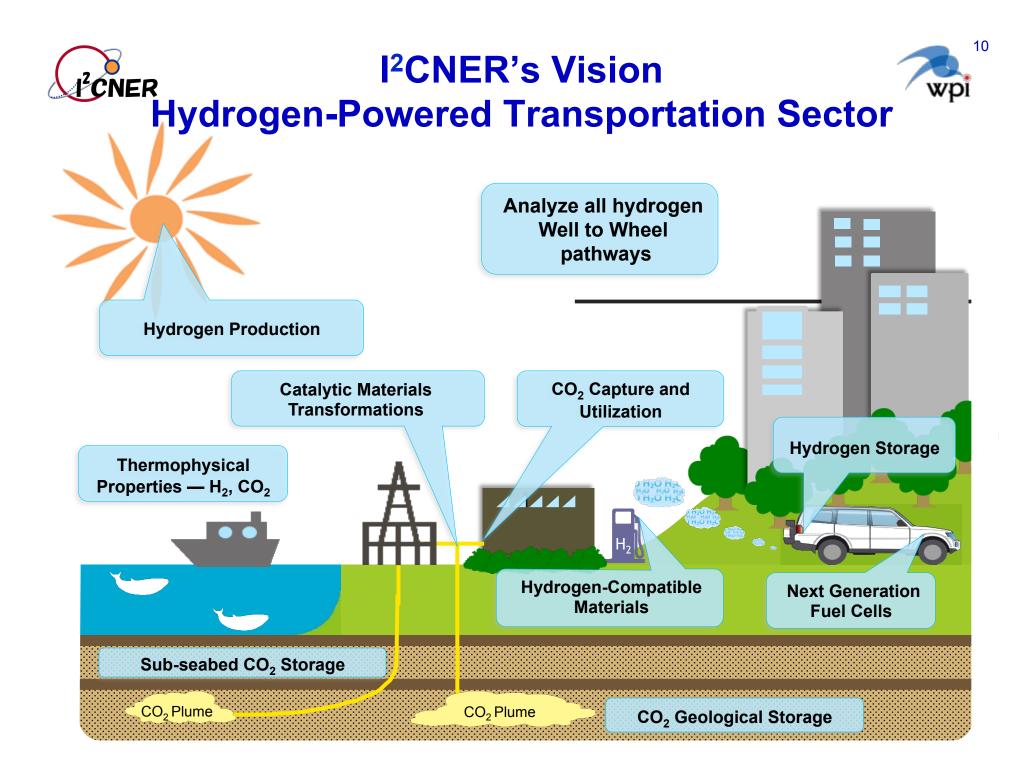

Potential use of renewable-based electricity is <u>substantial</u>

- Japan 2010 electricity consumption: 3.9 EJ (1,100 TWh) and is projected to be the same or less by 2050
- Requires efficient <u>cost acceptable</u> renewable energy technology

Intermittent wind and PV requires

- Efficient spinning reserve (NG plant or flexible coal)
- and/or energy storage (pumped hydro, compressed air, batteries, H₂ storage system, V2G?)

- The key strategies for achieving a large emission reduction are: increase of efficiency in energy conversion and energy use, and reduction of carbon intensity (renewables and/or CCS) in the secondary energy supply.
- For the industrial sector, large point sources such as steel furnaces need to be taken care of by CCS or other low carbon process technologies.
- For the transportation sector, a large deployment of FCV or BEV (or bio fuel) using low carbon secondary energy is essential.



I²CNER Roadmap

	Short- Term 2020	Mid- Term 2030	Long- Term 2050	FUTURE		
Future Advanced Technologies	•Commercialization of FCV •Hydrogen Refueling Station	Popularization of Low Cost Hydrogen Refueling Station High Performance Li Battery Large Scale Battery Use	Advanced PWR & BWR ?? Commercialization of CCS Advanced Batteries Popularization of FCV	•Fast Breeder Reactor ?? •Solar Hydrogen Production	•Nuclear Fusion ??? •Carbon Neutral- Society	
	•Popularization of Residential PEFC & SOFC •Popularization of Solar	 Advanced Solar Panel (organic) Popularization of Off-Shore Wind Farm Advanced Residential PEFC & 	•Next Generation Advanced Solar Panel •Complete Smart Network •Advanced Biomass to Liquid Fuels •Triple Combined Cycle for Power Plant	•Popularization of CCS •Introduction of IGFC •Fuels from CO ₂		
I ² CNER Research Clusters	Power & On-Shore Wind Farm (Tribology) •Energy Efficient Technologies	SOFC •Non Incandescent/Fluorescent light •Demonstration of CCS	•Many Geothermal Plants	In red: technologies by current I ² CNER		
Hydrogen Production	•Organic Solar Cell •Interface / Surface Ch	•OLEDs •Steam Electrolys emistry	•Photo Catalytic Water Splitti	ng		
Hydrogen Storage	On Board: Novel hydrides (low cost, high density, cycleability, reversibility) Stationary: Novel hydrides (low cost, high performance)					
Hydrogen Materials Compatibility	•Identification of degrac	• Predictive models	st alloys and structural health monitoring im	plementation		
Thermal Science and Engineering		CO ₂ •TP/HMT of New Refrige n •Non - Freon refrigeration •	rants Biomimetic use of CO ₂ for H ₂ and CH ₄ produ	iction (chlorella algae)		
Fuel Cells	Meso-porous carbon Carbon Free Highly-active cathode electrode (PEFC) High Temperature/Pressure SOFC Metal Oxide Catalyst					
Catalytic Materials Transformations	•Highly solactiv	•Biomimetics (Art	•Asymmetric catalysis ificial photosynthesis)• CO ₂ utilization		>	
CO ₂ Capture & Utilization	•CO ₂ conversion to syn	gas •Polymer N	1embrane (Pre-combustion)			
CO ₂ Storage	Predictive modeling /	Reliable Monitoring	 Decentralized engineering systems 			

TP =Thermophysical properties, HMT=Heat and Mass Transfer, OLED=Organic light emitting diodes

