International Institute for Carbon-Neutral Energy Research

Powering the Future Internationalizing Research – PART III of V

P. Sofronis

Kyushu University
University of Illinois at Urbana-Champaign

November 7, 2013

New Value Chains and the Rise of Open Innovation in Asia Stanford University

I²CNER Structure

I²CNER's Organizational Structure

PRESIDENT OF KYUSHU UNIVERSITY: President Arikawa

Director accessed directly

I²CNER DIRECTOR: Prof. Sofronis

- •Administers the affairs of the Institute. ~ KU Regulations
- •Sets the research directions, promotes research quality, and provides overall management of I²CNER and Satellite. ~Agreement
- Decides any necessary matters concerning the Members at the Institute.
- ~ Governing Document (Divisional and Personnel Structure for the Thematic Research Areas of I²CNER)

ILLINOIS SATELLITE INSTITUTE

ASSOCIATE DIRECTOR: Prof Christensen

Research administration and contacts with KU

EXECUTIVE ADVISOR: Mr. Dick

Budget issues

EXTERNAL ADVISORY COMMITTEE (EAC)

INTERNAL PROGRAMS **REVIEW COMMITTEE (IPRC)**

SRA SELECTION COMMITTEE

SRA: Super

Research

Assistant

FACULTY RECRUITING **COMMITTEE** (FRC)

SCIENCE STEERING COMMITTEE (SSC)

ASSOCIATE DIRECTOR:

Prof. Ishihara

- Serves in the promotions committee.
- ●Is in charge of I²CNER workshop organizations.
- Administers seminar series.
- Oversees facilities and equipment.
- Provides input and advice to Director.

ASSOCIATE **DIRECTOR:**

Prof. Takata

- Serves at the FRC
- Promotes international and industrial collaborations.
- Handles graduate student research matters.
- Serves on the SRA Selection Committee.

ADMINISTRATIVE OFFICE **ADMINISTRATIVE** DIRECTOR:

Prof. Funaki

- Administers the affairs of the office to facilitate the operations of the Institute. ~ KU Regulations
- Provides administrative support to the research personnel of I²CNER. ~ Agreement

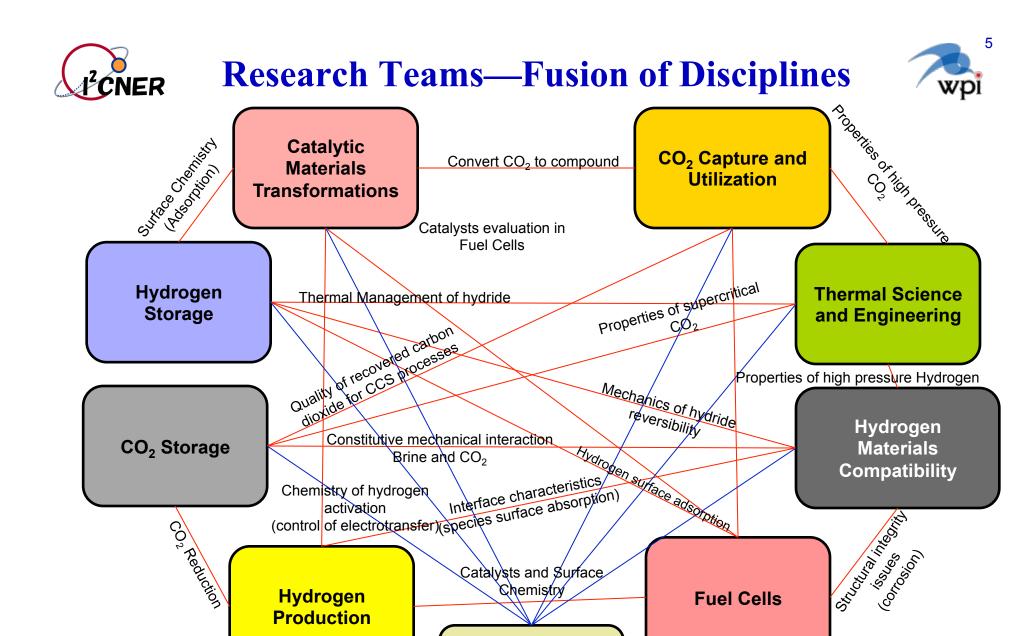
RESEARCH DIVISIONS (Thematic clusters)

Hydrogen Production Hydrogen Materials Compatibility Fuel Cells

Thermal Science and Engineering Hydrogen Storage Catalytic Materials Transformations CO₂ Capture and Utilization CO₂ Storage Energy Analysis

I²CNER COUNCIL

External Advisory Committee


Members

- Prof. Ronald Adrian, Arizona State University, USA (Chair)
- Dr. Deborah Myers, Argonne National Laboratory, USA (Vice-Chair)
- Dr. Robert Finley, Illinois State Geological Survey, USA
- > Prof. Reiner Kirchheim, University of Gottingen, Germany
- > Prof. Robert McMeeking, University of California, USA
- Dr. Kevin Ott, Los Alamos National Laboratory
- Prof. Tetsuo Shoji, Tohoku University, JAPAN
- Dr. George Thomas, Sandia National Laboratories/EERE Office of US DOE, USA
- Institute was reviewed on February 1, 2012 and May 30, 31, 2013
- Implementation of recommendations

Division interactions and interdisciplinary fusion research

Catalysts and Surface Chemistry

Energy Analysis

Fuel Cells

Hydrogen

Production

26 Principal Investigators (as of October 1, 2013)

Hydrogen Production

ISHIHARA Tatsumi

ADACHI Chihaya

TAKAHARA Atsushi

Ken

KILNER John

Hydrogen Storage

AKIBA Etsuo

Zenji

Hydrogen Materials Compatibility

Brian

Petros

Joichi

Setsuo

SOMERDAY SOFRONIS SUGIMURA TAKAKI KIRCHHEIM ROBERTSON Ian

Catalytic Materials Transformations

OGO **YAMAUCHI** Seiji

KATSUKI **Tsutomu**

Fuel Cells

SASAKI Kazunari

NAKASHIMA Naotoshi

TULLER Harry

Reiner

GEWIRTH Andrew

CO₂ Capture and Utilization

Miho

Katsuki

Thermal Science and Engineering

TAKATA Yasuyuki

ZHANG Xing

CO₂ Storage



CHRISTENSEN Ken

I²CNER Female Researchers

Miho Yamauchi
Catalytic Materials Transfor
WPI Principal Investigator
Kyushu University

Chao-Nan Xu
Hydrogen Materials Compatibility
WPI Visiting Professor
National Institute of Advanced
Industrial Science and Technology

Maki Matsuka
Hydrogen Production
WPI Associate Professor
Kyushu University

Ping Chen
Hydrogen Storage
WPI Professor
Dalian Institute of Chemical
Physics(China)

Akari Hayashi
Fuel Cells
WPI Associate Professor
Kyushu University

Nicola Perry Fuel Cells WPI Postdoc Kyushu University

Junko Matsuda Hydrogen Storage WPI Assistant Professor Kyushu University

Visiting Female Students from Illinois

Jennifer Rupp
Fuel Cells
WPI Associate Professor
Federal Institute of
Technology, Zurich

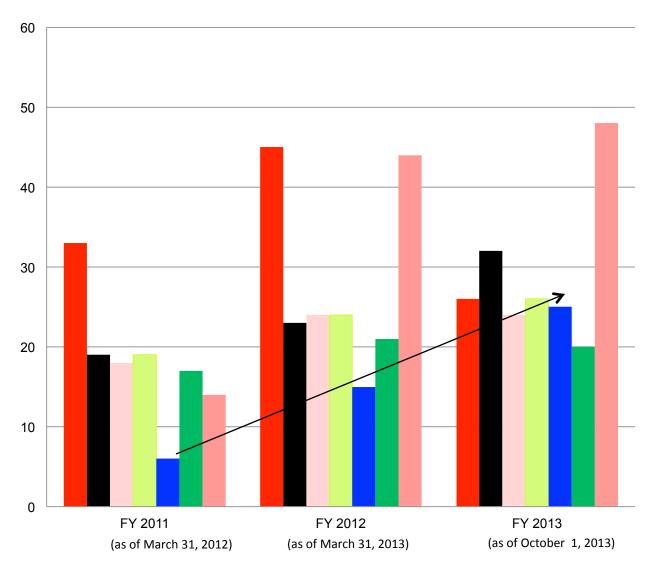
Hoda Emami Hydrogen Storage WPI Postdoc Kyushu University

Helena Tellez Lozano
Hydrogen Production
JSPS Postdoctoral Fellow
Imperial College London

• Kelly Nygren & May Martin
June - August 2011
Visited Hydrogen Structural Materials Div.

18/152 = 11.6%

• Molly Jhong
January & June 2012
Visited CO₂ Separation & Concentration Div. and Fuel Cells Div.


• Kelly Nygren & Megan Emigh
June - August 2013
Visited Hydrogen Materials Compatibility Div.

I²CNER Personnel Summary

- Total number of researchers: 155 (128 Kyushu, 27 Illinois)
- Non-Japanese: 72 or 46%

- ■WPI Principal Investigators
- WPI Professors
- WPI Associate Professors
- WPI Assistant Professors
- Postdoctoral Researchers
- Research Assistants (Funded by I2CNER)
- Resaerch Assistants (No Funded by I2CNER)

Postdocs

FY11: 6 FY12: 15

FY13: 25

-6: added 6 from Apr. to Oct.

-4 : positions to fill (open call for recruitment just closed, interviews in December)

Research Assistants

Funded by I²CNER

FY11: 17

FY12: 21

FY13: 20

Not Funded by I²CNER

FY11: 14

FY12: 44

FY13: 48

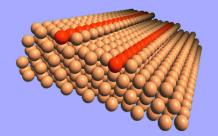
I²CNER Researchers ~ Breakdown

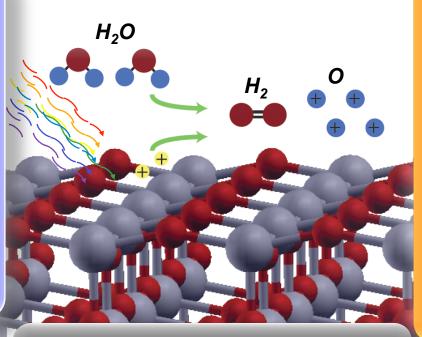
(as of October 1, 2013)

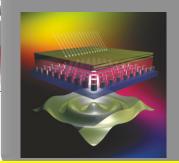
WPI Title	Total (*Non-Japanese)	Kyushu	Illinois
PI	26 (9)	24	2
Prof	32 (14)	26	6
Assoc Prof	24 (5)	23	1
Asst Prof	26 (8)	24	2
Other (faculty)	2 (1)	1	1
Post doc	25 (20)	23	2
RA	20 (15)	7	13
Total	155 (72)	128	27

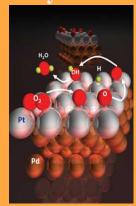
• Non-Japanese : 72/155 = 0.464 (46%)

• Female researchers: 18/155= 11.6%


Research


Photocatalytic Hydrogen Production International Approach


Understanding
Surfaces & Interfaces
in Photocatalysis


Takahara, Staykov, Ertekin, Hagiwara, Martin, Rockett

New Materials for Light Absorption and Charge Separation

Ishihara, Adachi, Hayashi, Hagiwara, Martin, Ertekin, Gewirth **Probing Catalytic Activity in Devices**

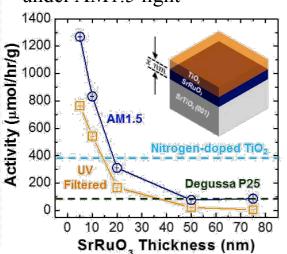
Ishihara, Sasaki, Gewirth, Hagiwara, Takahara, Hayashi, Ogo, Rauchfuss

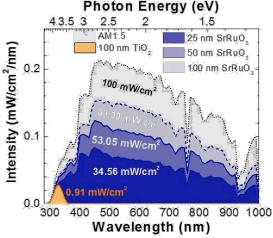
Roadblock: H₂ production efficiency using visible light is less than 0.1%

Photocatalytic Water Splitting with Visible Light

Roadblock: H₂ production efficiency using visible light is less than 0.1%

 Achieved promising 2.7% efficiency at 420nm with combination of organic dye and GaN (ZnO)


 Ag_3PO_4 Ga(Zn)N(O)BaTaO₂N (O₂, sacrificial (complete (H₂, sacrificial reagent) decomposition) reagent) 200 Ishihara 1.4 180 H2 Formation rate [µmol / h g-cat. 160 02 1.2 140 H₂O Dye 120 Absorbance NiO₄ 100 RhO, H₂O 80 H₂ formation 02 60 IrO₂ 40 0.6 O₂ formation 20 500nm 0.4 used -20 200 300 400 500 600 700 800 Wavelength / nm


Phys. Chem. Chem. Phys., 13, 18031 (2011)

Novel oxide heterostructures enable efficient absorption of 75X more sunlight than TiO₂ → higher efficiency

SrRuO₃ absorbs strongly across the visible regime → better utilization of sunlight

Hot-carrier injection into TiO₂ give rise to strong catalysis under AM1.5 light

Martin

Under review at Nature Materials

Highly Efficient Organic Solar Cells (PCE>15%)

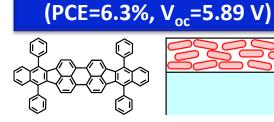
Our Goal Solar cell (ex.11%)

Steam electrolyzer (90%)=10%

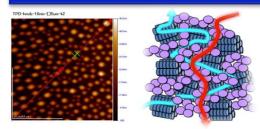
- -Low-cost: Organic materials
- -Large area and flexibility
- -Energy savings for production
- -Large absorption coefficient
- -Unlimited molecular design

Highly efficient bulk heterojunction photovoltaic cells based on C₇₀ and tetraphenyldibenzoperiflanthene Yan-qiong Zheng; William J Potscavage Jr.; Takeshi Komino; Masaya Hirade; Junji Adachi; Chihaya Adachi Appl. Phys. Lett., 102, 143304, (2013)

- DBP SubPc Current density / mA TAPC C₇₀-only Voltage / V


IV) Bulk heterojunction with high purity materials (PCE=7.0%)

III) Control of Molecular


Orientation

II) Preparation of Nano-pillars (PCE=1.2%)

I) Control of Nano-sized **Grain Morphology** (PCE=4.1%)

Nanocrystal growth and improved performance of

Formation of Organic Crystalline Nanopillar Arrays and Their Application to Organic Photovoltaic Cells

Appl. Mat. Int. 3, 80-83, (2011) **Top 10 Most Read Articles**

Very high open-circuit voltage of 5.89 V in organic solar cells with 10-foldtandem structure

Appl. Phys. Lett. 100, 243302 (2012)

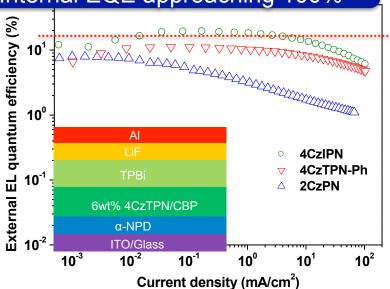
Small molecular organic photovoltaic cells with exciton blocking layer at anode interface for improved device performance

Appl. Phys. Lett., 99, 153302 (2011) **Top 20 Most Downloaded Articles**

small molecule bulk heterojunction solar cells composed of a blend of chloroaluminum phthalocyanine and C70

Appl. Phys. Exp. 3, 121602 (2010)

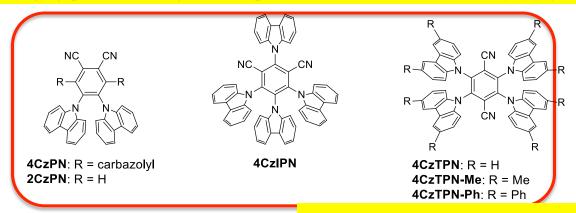
Using photovoltaics to push hydrogen production from water to higher efficiencies

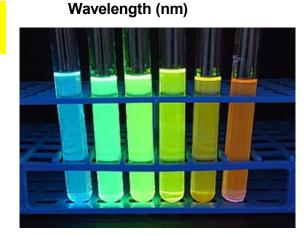


Third Generation Organic Light Emitting Materials for OLEDs

"Excellent demonstration of fusion research"

"Technological developments in energy conservation

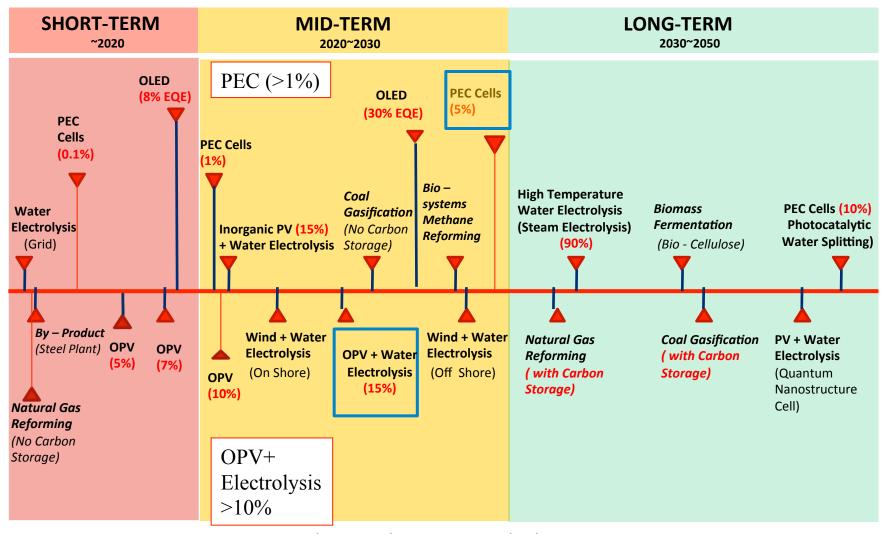




delayed fluorescence 2CzPN
4CzIPN
4CzPN
4CzTPN-Me
4CzTPN-Ph
4CzTPN-Ph

14

A new class of organic electroluminescent molecules in which the energy gap between singlet and triplet excited states is minimized by design


Dicyanobenzene derivatives

H. Uoyama et al., Nature 492, 234-238 (2012)

Hydrogen Production Roadmap

Boxed research targets are high priority Italics indicate a non-I²CNER research theme

Electrochemomechanics: Reducing the Chemical Expansion Coefficient in Ceria by Addition of Zirconia

Advanced electrode materials for SOFCs exhibit large changes in oxygen content ("breathing" of O₂)

This deleterious *chemical expansion* results in <u>poor SOFC durability!!</u> ← *Roadmap target*

Bottleneck: Poor understanding of atomistic mechanism = lack of guidance to ↓ chemical expansion

Discovery: Expansion from the larger size of the reduced cation after an oxide ion is Back cover removed from the lattice vs contraction by the oxygen vacancy left behind highlight! **Computational Insight Experimental Validation** 1.5 GCO -900 °C 1.2 2.23 2.10 Å Expansion / % 0.9 **PZCO** 2.42 / 0.6 2.11 Å -△- 700 °C -□- 800 °C 0.3 -o- 900 °C ---- Comput. 0.0 0.1 0.2 S. R. Bishop et al., Energy and Change in oxygen content of electrode Environmental Science, 6 (2013) 1142

Discovery: smaller cations allow larger relaxations around the O vacancy