

Revolutionizing Our Energy Future Joint International Smart Grid Demonstration Projects by NEDO -

NEDO Silicon Valley office Go Takizawa

- 1. Introduction of NEDO
- 2. Recent Issues and Challenges in the Energy field.
- 3. NEDO's Smart Grid Demonstration Projects in the U. S.

1. Introduction of NEDO

- 2. Recent Issues and Challenges in the Energy filed.
- 3. NEDO's Smart Grid Demonstration Projects in the U. S.

New Energy and industrial technology Development Organization

NEDO is Japan's largest public R&D management organization.

Following the two oil crises of the 1970s, the need for energy diversification increased. Against this backdrop, NEDO was established as a governmental organization in 1980 to promote the development and introduction of new energy technologies.

- Chairman: Mr. Kazuo Furukawa
- Organization: -Incorporated administrative agency under the Ministry of Economy, Trade and Industry (METI) of the Japanese government
 - Established in 1980
- Location: Kawasaki City, Japan

Personnel About 800

BudgetApproximately 1319 million USD (2015 fiscal year)

Japanese version of Department of Energy (DOE)

6

NEDO's R&D led to the creation of the Solar Cell Market

- NEDO carried out 30 years of research to "COMMERCIALIZE" PV technology.
- A system installation price is 10 times Lower Now.

Advanced LED Technology

 The project leader, Professor Hiroshi Amano, was awarded the 2014 Nobel Prize in Physics.

Changes in Domestic Shipments of Lighting Equipment (millions of yen)

NEDO's Project Leader is a 2014 Nobel Prize Winner!

Blu-ray Disc

- The development of the Blu-ray Disc technology was derived from a NEDO project.
- The Project succeeded in raising recording density by technology which reads data by detecting the very small pit on a disk with blue laser.

Overseas Offices

1. Introduction of NEDO

2. Recent Issues and Challenges in the Energy field.

3. NEDO's Smart Grid Demonstration Projects in the U. S.

- 1) Climate Change
- 2) Penetration of Renewable Energy
- 3) Introduction of Distributed Generation
- 4) Needs for Resilient System
- 5) Challenges for a Mass Introduction of Renewable Energy
 - i. Frequency regulation
 - ii. Duck Curve Problem
 - iii.Voltage rise

A warming of 0.85 ° C (1880–2012)

Source:.IPPC Climate Change2013: The Physical Science Basis

NEDO

Climate Change Effects

Solar Panel Price is going down in the World

- Price of PV is going down. Recent data from US shows the price of PV is now under \$0.65/W (1979; \$33.69/W).
- The cost of the energy from PV is lower than the electricity price from utilities in many places.

Solar Panel Prices Have Dropped 98% Since 1980

Source: IEA

Total Installed Solar PV Capacity in the U.S.

Total Installed Solar Wind Capacity in the U.S.

Renewable Energy Targets of the world

Many countries already set ambitious targets for renewable energy.

Renewable Energy Targets

Spectrum of Renewable Energy Targets

chnology-specific roadmo

Legally binding renewable energy targets (e.a. Laws, Renewable **Obligations, Renewable Fuel** tandards. Renewable Portfoli andards, etc.)

California Renewable Energy Target

- The California State must achieve RPS target of 33% by 2020.
- Governor Brow has just signed new ambitious RPS target of 50% by 2030 on October 7th.

Hawaii Renewable Energy Target

The State of Hawaii set a RPS target of 100% by 2045 on July 1st. 2015.(HB623)

Source: Governor.hawaii.gov

2. 3) Introduction of Distributed Generation

• Roof-top solar is penetrating to the customer side.

Residential solar PV capacity 0.8GW(2011) $\rightarrow 4.4$ GW(2014) Source: EIA data

NEDO

2. 3) Introduction of Distributed Generation

- The spread of EV will cause a higher peak of demand.
- EV can be used as a battery.

Cumulative 2011-present: 142,069 (CA)

2. 3) Introduction of Distributed Generation

Other tools for Distributed Generation

Storage batteries

Source: DOE, PG&E

Gas engine generator

2. 4) Needs for Resilient System

Hurricane Sandy alone caused more than 8.5 million power outage across 21States.
Centralized grids are inherently vulnerable to single points of failure.

2. 4) Needs for Resilient System

Operational Experience of Sendai Micro Grid

• Sendai Micro Grid survived the huge earthquake and supplied electricity to the hospital.

Great East Japan Earthquake(2:46 pm on March 11, 2011)

Demonstration Project on Power Supply System by Service Level

2. 5) Challenges for a Mass Introduction of Renewable Energy

i . Frequency regulation

- As renewable energy sources are variable in nature, they could cause difficulty in the stable supply of electricity when introduced on a large scale.
- Power demand and supply always need to be matched, and frequency is maintained constant by matching demand and supply.

2. 5) Challenges for a Mass Introduction of Renewable Energy

ii . Duck Curve Problem

• Due to increase of rooftop PV, big demand drop appears in noon time and big ramp appears in the morning and evening.

2. 5) Challenges for a Mass Introduction of Renewable Energy

iii. Voltage rise

- If the we have a large number of PVs in a feeder, the voltage rise problem occurs.
- The voltage rise may result in a fire of a transformer.

Source: Material for the Secretariat of the 1st Next Generation Power Transmission/Distribution Network Research Meeting, Agency for Natural Resources and Energy

An image of the voltage rise problem in the power distribution system

1. Introduction of NEDO

- 2. Recent Issues and Challenges in the Energy field.
- 3. NEDO's Smart Grid Demonstration Projects in the U. S.

1) Project in New Mexico,

- i. Albuquerque
- ii. Los Alamos

2) JUMPSmartmaui project in Hawaii

** Coming California projects ** i . DC Fast Charging Project

ii . Energy Storage Project

3.1) i . Albuquerque

Micro Grid Plant in Albuquerque

Micro Grid Plant

Mesa del Sol Aperture Center

Sandia National Laboratories University of New Mexico Public Service of New Mexico Mesa Del Sol

3.1) i . Albuquerque

BEMS configuration

3.1) i . Albuquerque

Main Demonstration Contents

a) Independent operation of microgrid

b) Virtual power plant

Co-operation with local utilitiy

3. 1) i . a) Independent operation of microgrid

3. 1) i . a) Independent operation of microgrid

Performance results in BEMS islanding mode

• BEMS perfectly controlled the balance between demand and supply of electricity.

3. 1) i . b) Virtual power plant

Performance results in Grid-connected mode

- The system has the ability to change the target value at connected point to the Grid.
- The system can shift from the grid-connected mode to the islanding mode without any instantaneous interruption.

3.1) ii . Los Alamos

Source: Los Alamos Department of Public Utilities

System configuration in Los Alamos site

Main Demonstration Contents

a) Integrated energy management system (μ EMS)

b) Demand Response

c) Smart house

Demonstration of Smart House System 3. 1) ii . a) Integrated energy management system (μ EMS)

Function of supply demand management by μEMS

3. 1) ii . a) Integrated energy management system (μ EMS)

• μ EMS can contribute to the issue of high renewable energy penetration.

µEMS demonstration results

3. 1) ii . b) Demand Response

In Los Alamos site, 900 households with installed smart meters volunteered to participate in the demand response demonstration.

Demand Response related system

Display price info on PC and mobile phone.

Demand response menu applied in the experiment

Group	Initial	Opt-in	Opt-out
Opt-in CPP	Flat	<u>CPP</u>	-
Opt-out CPP	<u>CPP</u>	-	Flat
Opt-out PTR	<u>PTR</u>	-	Flat
Control	Flat	-	-

CPP (Critical Peak Pricing): Very high price during peak period and discounted price during off-peak period [Price] Peak: 75¢/KWh, LAC flat rate: 9.52¢/KWh, Off-Peak: 7.77¢/KWh
 PTR (Peak Time Rebate): customers with peak-time consumption less than baseline will receive rebate [Rebate] 75¢/KWh x kWh saved
 The combinations of two pricing scenarios with default options (Opt-in and Opt-out)

• The best result was obtained with Opt-in CPP in summer time where TOT was 10.49%, showing very high peak reduction effect.

Result of DR experiment in 2013

	Group	TOT effect	Choice probability	ITT effect
Summer	Opt-in CPP	-10.49%	64%	-6.90%
	Opt-out CPP	-4.71%	98%	-4.59%
	Opt-out PTR	-4.17%	97%	-4.06%
Winter	Opt-in CPP	-7.12%	64%	-4.78%
	Opt-out CPP	-4.41%	98%	-4.27%
	Opt-out PTR	-3.37%	97%	-3.26%

* TOT effect : Treatment on the Treated. Net peak cut effect when a treatment was given.

• ITT effect : Intention to Treat. Choice probability x TOT effect.

* The majority of people do not own air conditioners.

3. 1) ii . c) Smart house

• The HEMS (Home Energy Management System) completely controls all household Smart appliances and devices.

Energy system of Smart House

Optimizing energy consumption in association with TOU

- HEMS minimizes energy costs of the home in association with TOU and does not disturb the resident's comfort.
- The result of the demonstration is a maximum profit is \$20/day.

Result of demonstration of TOU control

3. 1) ii. c) Smart house

Optimizing energy use in response to the request from *µEMS*

• HEMS Perfectly controls the power output to the grid based on the request from μ EMS.

Result of control in response to μ EMS' request

Target Value of Power at connected point

3. 2) JUMPSmartmaui Project

Hawaiian Electric

Maui Electric

Maui of Hawaii Today

High cost of energy is driven by variable oil prices.

Hawaii ranks #1 in electric energy costs: 45.85 cents/kWh Lanai, 47.06 cents/kWh Molokai, 41.89 cents/kWh Hawaii, 37.83 cents/kWh Maui, 35.48 cents/kWh Oahu (Avg. Residential rates in 2014) 11 - 12 cents/kWh U.S. avg.

- Hawaii has relied on fossil fuels for 90% of its energy consumption.
- Island is experiencing rapid growth of intermittent renewable generation negatively impacting grid operations and reliability.
 -RE ratio in Hawaii 21%(2014) Target; 100% (2045)

These circumstances are ideal to demonstrate advanced smart grid technologies.

3. 2) JUMPSmartmaui Project

Partners;

The State of Hawaii, Hawaiian Electric Company, Maui Electric Company, Hawaii Natural Energy Institute, The County of Maui, The Maui Economic Development Board etc.,

Entrusted parties;

Hitachi, Mizuho Corporate Bank, Cyber Defense

Outline of the system

3. 2) JUMPSmartmaui Project

Geographical Locations of Devices in Maui

3. 2) JUMPSmartmaui Project

Demonstration Contents of Phase 1

i. Shift of EV charging load EVECC DMS DLC (DR) Smart Cit Direct control technology demonstration 12M Netv using EV/PHEV Trans-Station former Participants' House Batteries •1 unit of Lithium Ion 1 unit of Lead Acid EV Level2 Charger

 ii Mitigation of over-voltage issue at local feeders
 D-EMS demonstration by controlling demand and PVs under substation

3. 2) i . Shift of EV charging load

• EVECC controls EV charging period based on DMS forecast to best utilize renewables (to reduce curtailment of renewables)

3. 2) ii . Mitigation of over-voltage issue at local feeders

- ENEDO
- μ -DMS monitors the grid status at transformer level and controls Smart PCS to mitigate possible over-voltage at transformers with PV densely installed.

Data source : HITACHI

3. 2) ii . Mitigation of over-voltage issue at local feeders

• Micro DMS and Smart PCS can contribute to mitigate power quality issues in distribution grid with PV densely installed.

UDMS A Switchboard B SmartPCS B : on secondary of the transformer : at SmartPCS grid connection point

Overview of Phase 2

Phase2: Demonstration with "Dis-charging" function

Demonstration in highly RE penetrated area like Maui:

Phase2 will evaluate using integrated, controlled EV battery discharge and management of distributed loads including V2X, as a "Virtual Power Plant (VPP) "

Virtual Power Plant (VPP): "Aggregating and optimizing available distributed energy resources (including EVs, storage, and demand response) to replicate the functions of a traditional power plant

Coming California Projects

- i . DC Fast Charging Project
- ii . Energy Storage Project

Source: Nissan

Source: Sumitomo Electric Industries

MOC of JAPAN and California

• Governor Brown and Japanese Ambassador to the U.S. signed a Memorandum of Cooperation (MOC) in September 2014 for climate change and renewable energy.

September 5, 2014 in San Francisco

Source: Ministry of Foreign Affairs of Japan

Coming California projects

September 10, 2015 in Sacramento

NEDO

i . DC Fast Charging project

1. PURPOSE

- Project will lengthen EV trips, influence EV drivers' behavior.
- Reduce greenhouse gas emissions, criteria pollutants, and fossil fuel use by EVs deployment.

2. ISSUE

- EV driving range is shorter than that of conventional vehicle.
- EV charging infrastructure has been mostly deployed in urban area than inter-city area.

3. ACTION

- Installing DC Fast chargers along highways and monitor their use.
- Analyzing EV traffic data and analyzing the correlation between the deployment of DC fast chargers and EV driving behavior.

ii . Energy Storage Project

/FB

Advantages of VFB as large power storage applications

- No limit of cycles @full charge/discharge 1.
- Long lifetime (20+ years) 2.
- Easy to increase the capacity battery system by adding an electrolyte tank 3.
- 4. Fast response
- Accurate State of Charge(SoC) monitoring 5.
- Non-combustibility 6.

1. PURPOSE

- Provide practical solution toward 2020.
- Work together with Investor owned utility in California and let many Utilities know about the potential of vanadium flow battery.

2. ISSUE

- Little practical experience of operating energy storage system for hybrid application of both energy and regulation
- Little validation of economic value for utility owned energy storage for multiple applications.

3. ACTION

- Install 2MW 4hour VFB at a utility's site in CA
- Demonstrate the energy storage system for both energy and regulation with utility and CAISO.

Thank You for your Attention!

Go Takizawa takizawago@nedo.go.jp