EASTASN - , EE - , EALC – 402A Topics in International Technology Management Week 1: September 23, 2021

Stanford US-Asia Technology Management Center

Where Is Asia Going? Mobility as an Aspect of the Fourth Industrial Revolution

Richard B. Dasher, Ph.D. Director, US-Asia Technology Management Center Adjunct Professor, Stanford University

Welcome to everyone

Stanford US-Asia Technology Management Center

- Stanford students may take the series for University credit
 - Register for EASTASN-402A, EE-402A, or EALC-402A
 - One unit, S/NC
 - See Syllabus for requirement for credit (may differ from other seminars)
 - Weekly comment by email to me that provides evidence you watched the session
 - Each comment is due within two weeks of the date of that session
 - Due to my deadline for submitting grades, final comment will have shorter deadline
 - All work due to me by: Friday, December 10, at 5:00 pm, Pacific time.

Public is welcome

- Continuing long history of US-ATMC mixed audiences: Silicon Valley and Stanford
- Please register for the entire series at <u>https://stanford.zoom.us/meeting/register/tJIIdu6srDsjG9yX-9Mhl6v2VCtCcBUhSLYo</u>
- Time of official class: 5:30 pm 7:00 pm
 - The session is being recorded and will be posted to the Internet
- Optional networking session (not recorded): 7:00 pm about 7:30 pm

2021.09.23

Richard B. Dasher

Outline

Stanford US-Asia Technology Management Center

Understanding the current Industrial Revolutions

Overview of Asia innovations in mobility

- Mobility 1: New ways of getting around
- Mobility 2: New things to do with mobile devices

Teaser: subsequent sessions of this series

We are in the middle of two overlapping **Industrial Revolutions**

Stanford US-Asia Technology Management Center

First Industrial Revolution (IR): Advent of machines (mechanization)		mid-late 1700's – mid-late 1800's	New tools, equipment, manufacturing processes (& lifestyles)	
Second IR: New ways of using machines: mass manufacturing		mid 1800's – mid 1900's	Assembly lines, standardized parts > specialized salaried jobs > urbanization	
Third IR: digital ICT becomes ubiquitous	Mainframe-terminal	1940's – c. 1980	Structured text > unstructured text > image/audio > IOT	
	Client-server	c. 1980 – c. 2005		
	Cloud	c. 2005 - present		
Fourth IR: New ways of capturing value from data	Industry 4.0 (transitional from 3-IR)	c. 2010 - present	Artificial intelligence, blockchain, edge computing, quantum	
	More analytics and automation		computing,	
2024 00 22	ים:	abard P. Daabar	A	

2021.09.23

Scale of 3rd Industrial Revolution

Stanford US-Asia Technology Management Center

(Mobile)

application

category

Video streaming

Web

Messaging

Marketplace

File sharing

VPN and security

Gaming

Cloud

Audio

Social networking

Rank

1

2

3

4

5

6

7

8

9

10

% down

48.9%

19.3

13.1

6.7

4.3

4.1

1.3

1.1

0.9

0.2

% up

19.4%

16.6

23.1

20.4

1.9

1.2

6.6

6.7

3.9

0.2

Above: Sandvine. *Mobile Internet Phenomena Repor*t, May 2021.

2021.09.23

Scale of 4th Industrial Revolution

4-IR: AI adoption in selected industries (2019)

Percentage of respondents, by selected industry, who reported 1-or-more AI programs in at least one product or business process for 1-or-more functions or business units

• Of 2,360 respondents in all industries, 1,872 work at companies that fit this category

Retail

McKinsey, Nov. 2019, Global AI Survey

2021.09.23

Richard B. Dasher

7

Industrial revolutions and digital transformation

Stanford US-Asia Technology Management Center

• What happens in an industrial revolution? Macro-scale change

- New ways of doing things in industry become mainstream
- New lifestyles become the norm
- Polarization of winners and losers
 - Companies and people "on the side of innovation" tend to increase in wealth
 - Economic gap widens to those left behind
 - Results in 19th-century: migrations to the New World, social unrest, reactionary politics
 - Results in 21st-century: national populism, anti-immigration sentiment, etc.

Digital transformation: Micro-economic response

- Individual companies undergo change at their core
 - Adopting the new standards is essential to stay "alive" (competitive)

2021.09.23

Mobility as aspect of 3rd, 4th Industrial Revolutions

Stanford US-Asia Technology Management Center

- Key devices at focus of changes that merit the term "revolution"
 - Smartphone
 - Automobile rapid onboarding of more and more digital ICT
- Digital technologies intrinsically involved in (all of) the changes

Mobility Category 1: Moving people and things around

- Shift from gasoline power to electric vehicles (EVs) battery management
- Connected car (> smart city) digital communications (mobile and WiFi used by mobile platforms)
- Autonomous vehicles, drones AI-based control or remote control via digital comm.
- New propulsion systems on horizon fuel cells, direct hydrogen power
- Logistics management (often AI-enabled) cloud and edge computing

Mobility Category 2: Doing things with smart mobile devices

2021.09.23

Mobile access as aspect of 3rd IR

2021.09.23

Mobile access as aspect of 3rd IR (Slide 2)

Stanford US-Asia Technology Management Center

11

2021.09.23

Richard B. Dasher

Mobile Internet traffic in select (Asian) countries

Stanford US-Asia Technology Management Center

- advanced countries mobile rates low because of high desktop use rates
- So, very high use of mobile Internet in
- Vietnam may still reflect popularity of
- HK: 2020 troubles?

Asia mobile Internet speeds (selected countries) Stanford Management Center

World Down Up Latency Economy Rank (Mbps) (Mbps) (ms) S. Korea 192.16 21.42 30 2 China 5 163.45 30.34 29 (mainland) 17 USA 96.31 12.99 41 18 Singapore 91.75 19.78 21 81.32 22 Taiwan 16.30 24 Hong Kong 78.75 15.03 23 25 37 Japan 61.32 11.66 43

	WORLD AVG	56.74	12.61	37	
50	Thailand	49.37	15.40	30	
57	Vietnam	41.16	18.95	28	
73	Philippines	33.77	8.63	30	
82	Laos	32.04	13.88	31	
89	Malaysia	29.14	10.87	33	
112	Indonesia	21.96	12.44	33	
120	Pakistan	19.79	11.08	37	
126	India	17.96	5.11	47	

Survey August 2021 https://www.speedtest.net/global-index

· Average of test results by 300 unique users in

Notes

- Relatively slow speeds in some heavy mobile Internet traffic countries (India)
- Probably excludes (fixed) WiFi

2021.09.23

Richard B. Dasher

each country

Mobility 1: Moving people and things around in Asia

Advent of electric vehicles in select countries

Stanford US-Asia Technology Management Center

EV charging stations

Stanford US-Asia Technology Management Center

2021.09.23

Richard B. Dasher

16

On the horizon: Hydrogen fuel-cell vehicles

Stanford US-Asia Technology Management Center

China Pushes Ahead With Hydrogen, Defying Skeptics Like Elon Musk

An attendant fills a truck with compressed hydrogen at a filling station in Shanghai. (Qilai Shen/Bloomberg

Above: Ballard Systems providing fuel-cell hybrid buses to Foshan & Yungfu cities (Guangdong), China

- Planned deployment of 300 buses announced 2015
- Consortium with local manufacturer, design
 localization, local development of charging stations
- By 2018, 16 were already in use with passengers Source (Ballard Systems website)

2021.09.23

Japan and Korea automakers – push for FCEV as next generation EV

Stanford US-Asia Technology Management Center

• Three fuel cell hybrid cars already available in U.S.

- Honda Clarity (actually the first) leasing only, market figures unavailable
- Toyota Mirai in U.S. 2019 sales = 1509 cars, 2020 = 499
- Hyundai Nexo (SUV) to market from 2018
 - In Korea, over 10,000 units sold (cumulative) by Oct. 2020 (over 5,000 in 2020)
 - In U.S. 2019 sales = 320, iin 2020 = 208
- Charging stations are still big limitation
 - But, China plans to have 1 million FCEV on the road by 2030
- Hyundai plans to build fuel cell factory in Guangzhou (FT 2021.01.15)
 - Completion expected 2022 at cost of ~ \$1 billion
 - At first, will make 6,500 units/year, planned capacity of 730,000/year

+ Hyundai: first production models of big FCEV truck "Xcient" del. 12/20

2021.09.23

Really far out on the horizon...

HARKOCK (HARKOK)

Stanford US-Asia Technology Management Center

Toyota: racing car with hydrogen (combustion) engine

- Built on Corolla Sport body
- Completed 24-hour car race: (Round 3 NAPAC Fuji Super TEC 24 Hours Race at Fuji International Speedway, Japan) May 22, 2021
- -- 358 laps, 35 pit stops, had to leave racetrack & go to paddock each stop
- The driver was ... Toyota President Akio Toyoda (under racing name "Morizo")

Connected car – Asia approaches focus on "smart city" infrastructure development

Stanford US-Asia Technology Management Center

- Early discussions of connected car (~ 10 years ago) focused on location-based services – business just has not taken off
- In contrast, smart city projects are active, especially in Asia
 - Worldwide, over 443 smart city projects in 298 locations
 - Toyota has spun out "Woven Planet" upcoming session in our series
 - 10 cities in ASEAN (inc. Jakarta, Hanoi, Phuket, New Clark City [Ph.], ...)
 - Korean government has comprehensive "Smart City Korea" portal, as well as major project in Songdo (Incheon)
 - Typically: advanced communications (true 5G), IOT networks of sensors for vehicle-to-infrastructure communications, location systems, electronic payment, data analytics
 - Many will be autonomous vehicle testbeds autos, shuttles, delivery robots, etc.

2021.09.23

Companies with autonomous vehicle projects in China

Stanford US-Asia Technology Management Center

- AutoX (Hong Kong) started robotaxi service in Shanghai 4/2021, has just received permission to start testing in San Jose, CA
 - Backed by Alibaba Group, MediaTek, Shanghai Auto, and Dongfeng Motor
- Baidu started R&D 2013, branded "Apollo" from 2017, launced robotaxi service in Changsha (Hunan Prov.) Sept. 2019 with 45 AVs
 - Building testing grounds, including world's largest in Beijing's Yizhuang Economic Development Zone from May 2020
 - May provide operating system license to other developers
- **DiDi Chuxing** AV robotaxi service in Shanghai (Jiading) from June 2020
- Pony.ai has 50 AVs operating in Guangzhou Toyota backing
- TuSimple autonomous long-haul trucks, HQ in San Diego
- WeRide robotaxi service in Guangzhou (JV with Baiyun Taxi)
 - Backed by Nissan/Renault group

2021.09.23

2021.09.23

Selected autonomous vehicle news in other Asia countries

Stanford US-Asia Technology Management Center

- 🔶 Japan
 - Honda brought to Japan market AV of Legend Mar. 2021
 - Claims to be Level 3, available for leasing only
 - Toyota ePallette AV shuttle bus in operation at Tokyo Olympics
 - NEC providing technology for AV testing in UK
 - Komatsu commercial AV "Autonomous Haulage System" in use at mines in Australia from 2009
- Singapore robotaxi project with nuTonomy (later bought by Delphi) from Oct. 2017
- **S. Korea** 22 autonomous vehicle-related startups (as of July 2021)
- India approx. 20 AV-related startups (as of Sept. 2021)

Mobility 2: Doing new things with mobile devices in Asia

ecommerce: Japan is moderately active but people still pay in traditional ways

Stanford US-Asia Technology Management Center

2021.09.23

In contrast, India ecommerce small % of retail, but Paytm is most preferred payment method

- Survey in March and April 2020 of approx. 500 people in India who do online shopping
- Right-hand chart shows preferred payment method
- Separate Q: "Which payments have you used (offline and online) in past month?"
 - -- 85% Paytm
 - -- 83% Visa credit card
 - -- 81% cash on delivery
 - -- 77% Google Pay
 - -- 66% Amazon Pay
 - -- 32% cash over counter

Richard B. Dasher

Stanford US-Asia Technology Management Center

Mobile payments apps – millions of users

Stanford US-Asia Technology Management Center

2021.09.23

Richard B. Dasher

28

Dynamics behind growth in Asia of doing things online via mobile devices

Stanford US-Asia Technology Management Center

- In some countries, mobile was the first means of access to Internet
- Business models may differ greatly from country to country
 - Many SEA users still use pre-paid minutes, rather than having a set subscription
- Telehealth may be focused more on reaching new markets than on improving quality of care
 - If so, tendency will still be to prefer in-person care
- EdTech is targeting adult markets
 - Crackdown on after-school education services in China
 - Japanese "juku" still seem to follow traditional patterns (after school in-person)
 - Professional skills, English for business people, etc. are areas of growth

Some points about today (and this series)

Stanford US-Asia Technology Management Center

- Mobility is a major aspect of the (overlapping) 3rd and 4th Industrial Revolutions
 - Increasing mobility will probably be one of the biggest changes in business and lifestyles 1980 – 2050
- Asia is particularly active in exploiting opportunities in mobility
 - Disclaimer: diverse countries, not much Asia-wide coordination (but active globalization by some private companies: Grab, Paytm, ...)
 - Although U.S. China tension is making bilateral exchanges more difficult, much information is available about what is going on in Asia
 - But, one has to look

Many Asian directions of mobility innovation: driven by local conditions

• Solutions that may not yet have been developed in U.S.

2021.09.23

Some upcoming sessions in this series

- See <u>https://asia.Stanford.edu</u>
- Sept. 30 Deepak Garg, Founder & CEO, Rivigo *A new approach to long-distance trucking in India*
 Oct. 7 Akimichi Degawa, CoFounder & CEO, Tier IV Daisuke Tanaka, COO, Tier IV and Exec. Officer, Autoware Foundation *Open source strategy in the automotive industry*
 Oct. 14 Dr. John Chan, Founder & CEO, Mapxus (Hong Kong) *Indoor mapping and navigation for visually impaired persons*
 Oct. 21 Madhu Shalini Iyer, Partner, Rocketship.vc *Massive adoption: VC perspectives into Asia opportunities*

in mobility applications

2021.09.23

Richard B. Dasher

Stanford US-Asia Technology Management Center Thank you for participating!!

Stanford US-Asia Technology Management Center

Contact: Richard Dasher, Ph.D. Director

- rdasher@stanford.edu
- Kimberley Williams
 - Senior Program Manager
 - kwillia1@stanford.edu