EE-402A Topics in International Technology Management

Innovation Systems In the U.S. and Asia

September 27. 2007

Richard B. Dasher, Ph.D. Director, US-Asia Technology Management Center Executive Director, Center for Integrated Systems Stanford University

Outline

About this series

Important notes to for-credit students

Innovation and corporate competitiveness

Innovation as a process

 University-industry-government roles in an innovation system

Comparison of the innovation systems of the U.S., Japan, and China

September 2007

About this series

- Produced by the US-Asia Technology Management Center, School of Engineering, Stanford University
 - <<u>http://asia.stanford.edu</u>> for details about this series, past series
- This is our 15th annual series: different theme every year
- Thanks to Squire, Sanders & Dempsey, LLP, for a gift in support of this series
 - Our 5th year of support from SSD !!

September 2007

Everyone is welcome!

Mixed audience: students, industry

Stanford students - to receive credit:

<u>Register</u> for the seminars (EE-402a)

(1) <u>Email written comments on nine sessions</u> (see Syllabus for details), AND

(2) Attend in person eight sessions at the auditorium

- Auditorium attendance waived for official SCPD students
- See Syllabus for details

September 2007

For today:
Please fill out & submit <u>survey</u>
This is your attendance record for today 9/27
Get syllabus, find course webpage via http://asia.stanford.edu

Send any questions and email summaries to:
Instructor: Richard Dasher rdasher at stanford dot edu

650-725-3621

Assistant: Hari Govindaharan harig at stanford dot edu

September 2007

Why innovation? Because things change

Film camera	Digital camera	Combo i-Phone / camera / game player (?)
Phonograph record	CD	Download from Internet
One team builds entire automobile	Assembly line	Supply chain (different companies for parts, systems, assembly, sales)

Past —

Present-

September 2007

Some types of innovation

- Develop new product (or service) for existing market
- <u>Develop new market or application</u> for existing product (or technology)
- <u>New combination</u> or package of technologies, products, services
- Change business process (e.g. outsourcing)
- Develop new business model
 - What to sell versus what to give away for free (cellphones)
 - Subscription or leasing, instead of sale (software, webhosting services)
- **Completely new idea** ("breakthrough" -- rare)

September 2007

Various types of innovation

New Product	Nintendo "Wii" (new feature added to existing product category)
New Market for existing product	(Hypothetical: use Wii to improve athletic training programs)
New Combination	Apple i-Phone
New Business Process	Company outsources employee medical services to specialist firm
New Business Model	Flat rate for cellular phone service
Completely New	Personal computer ?
September 2007	Richard B. Dasher Stanford University

Innovation as a process

"The process leading from the discovery or invention of a new idea or technology to its practical implementation (often via commercialization)"

Early stage (basic research): typically without a practical implementation (product) in mind

Late stage (development): driven by technology and cost demands of a real-world application

Usually, <u>different people</u> are involved at the <u>different stages</u>: together, they make up an <u>innovation system</u>

September 2007

University, industry, government roles in an innovation system

September 2007

(Explanation of previous slide)

Natural division of labor

- Basic research: government funds, university conducts
- Product development: industry funds, industry conducts
- Transition of roles at "Applied Research"
 - Both industry and government fund applied research
 - Both industry and university conduct applied research
- Knowledge transfer
 - Internal to industry: central lab to product division
 - From university to industry

September 2007

"Innovation system"

The institutions

 At national level, primarily: universities (and other research institutes), industry, government

The mechanisms

Funding

Transfer

Rights licensing, new company creation, …

The underlying policies

Provide overall direction, may provide constraints

September 2007

Factors in comparing national innovation systems - 1

- How government money flows to R&D in university, industry, and government labs
 Does the flow promote cooperative relationships?
 Employment patterns of R&D workers
 E.g., high mobility (change companies often), or not
 Patterns of university-to-industry knowledge transfer (mechanisms and policies)
 Rights ownership and licensing
 - Ownership of start-up companies and their assets

September 2007

Factors in comparing national innovation systems - 2

Infrastructure issues

Degree of macro-economic development; speed of growth

 Advanced economies typically rely on innovation for competitiveness more than do developing economies

- Sector-internal characteristics
 - E.g., Is there much M&A inside the industry sector?
- Other national policy objectives
 - E.g. to spread out capital more than just to a few big companies or business groups)
- Legal framework for IP and enforcement

September 2007

Stanford mini-case: Professors must obtain own research funds

- Direct cost to a Stanford EE professor of a 50% time graduate student RA: about \$50 - 60,000 / academic year
- Cost of a 50% time RA plus university overhead (~ 58%): about \$85,000 / academic year
- Number of Ph.D. students in a typical EE professor's research group: about ten
- Percentage of EE Ph.D. students with "own" fellowships or other funding: around 10%
- On average, professor must get funding from outside for about nine Ph.D. RAs: turn funds over to Stanford, which hires the RA

September 2007

Sources of Funds: Stanford School of Engineering

2005-06 Sources of Operating Funds
\$214.6 M (including \$119.2 M for research)• University funds21.0%• Endowment income11.0%• "Sponsored" research (contracts)45.0%• About 3/4 sponsored by U.S. government• Other (gifts, centers, licensing, etc.)23.0%

Companies fund research via "unrestricted" channels at SU

Contract Research ("Sponsored Projects")

Largest source of funds, but most is from governments or private foundations (not from companies)

The "other" channel: unrestricted funding

- More economical for the sponsor (not charged full 58% overhead)
- But, channel provides much less control to the sponsor
- Creates a different type of relationship between company and professor than does a research contract
- Professors often use these funds as matching funds in their government grant proposals

September 2007

How "matching funds" work

- Let's say, ... university professor applies in competition for \$1 million grant from U.S. government
 - Formally promises (in budget proposal to government) to do \$1.5 million worth of work
 - Leverages / stretches the government money
 - Shows that someone else values the research
 - Professor must obtain \$500,000 of "matching funds"
 - Not permitted to use other U.S. government grants as matching funds
 - Most likely source of matching funds: industry support

September 2007

Stanford mini-case: Some sources of "unrestricted" funding

- Expendable gifts to support research by specific professors
- Membership fees to "industry affiliate programs"
 - Include channels to provide support for research by specific professors (and even specific Ph.D. students)
- Fees (via gifts or affiliate programs) for accepting visiting researchers from companies to be in residence at Stanford
- Licensing royalties (only about 1% of School of Engineering budget)

September 2007

Comparing the U.S. and Japan systems - 1

	U.S.	Japan
	Competition-based	Still mostly allocated
	Each agency funds both university & industry research	Separate systems: companies < METI, universities < MEXT
Government money	Direct subsidy of industry R&D politically difficult	R&D policy: for industry / economic development (not much for defense)
	Matching funds: industry - university partnerships	Matching funds within industry for government projects

Comparing the U.S. and Japan systems - 2

	U.S.	Japan
Employment patterns	High mobility: industry "buys" Ph.D. graduates	Lifetime employment: hire young & assign to research in company lab
Patterns of transfer from	Highly developed licensing and also "spillover" relationships	New laws and patterns since 1998; still "bugs" in working out implementation
university	Many examples of successful new company spin-out	No superstar examples of successful spin-out (yet)

Comparing the U.S. and Japanese systems - 3

		U.S.	Japan
	Infrastructure	Companies strong at M&A to acquire knowledge, tech	Highly developed company-internal knowledge transfer
		Need innovation for high value-added business (to sustain high cost of living)	
		Legal system well-established in general, consistent enforcement	

September 2007

The result: comparing universityindustry cooperation in U.S. and Japan

U.S.

- Most common pattern: university-based research with real-time industry participation
- Motivations for research cooperation:
 - Two-way, long-term knowledge exchange
 - Recruiting
- Industry expects to pay to participate
 - But not pay full cost

Japan

Most common:

- Research outsourcing
- Rare: company visitor in university research group

Motivations:

- Company's specific commercial objectives
- Close, lasting personal relationships between professors & graduates
 - May marginalize revenue to university

September 2007

China - 1

	Some funding for S&T development still comes from World Bank, UNESCO
Infrastructure: transitional	Lack of large domestic companies with resources or needs to fund research in universities (but university research funding is coming from foreign firms)
economy	Industry cooperation with university focuses on recruiting, long-term relationships for later use
	Reorganization of university sector, still many Soviet-style research institutes

September 2007

Background: Higher Education in China - 1

Western-style shifted to Soviet style from 1949

- Universities specialized in single disciplines / fields
- Advanced research done more in government research institutes
- Research topics defined (only) by government
- Shut-down of universities during cultural revolution (1964 1976)
 - Nationwide college entrance exams resumed: 1978
 - Chinese government sends grad students, visiting scholars to U.S.: from late 1970's
 - (Re)appearance of university graduate schools

September 2007

Higher education in China - 2

 Chinese government policy statement (1998): build some Chinese universities into world-class institutions

- Major shift back toward Western-style, comprehensive universities
- Mergers: between 1996 2000, 383 universities into 212
- Hiring of returnee-professors (from universities abroad)
- Government gives major increases of S&T funding to universities
 - Relative share of government R&D budget shifts away from national institutes
- Focus also on innovation

September 2007

S&T funding in Chinese universities, 1991 - 2003

Unit: 100 M RMB; cited in Chen and Kenney, 2005

September 2007

Total R&D spending in China (from all sources of funds)

- 2003: total R&D spending was RMB 154 billion
 - Increase of 20% over 2002
- Universities accounted for 10.5% of total R&D spending
 - **Government research institutes: 25.9%**
 - But research institute share of R&D spending had been 42.8% in 1996
 - Company R&D: 62.4% of total spending
 - Had been 43.3% in 1996
 China Nat'l Bureau of Statistics, cited by Chen and Kenney 2005

September 2007

Background: High-Tech Business in China

- Tend to compete more on cost than on the most advanced technologies
 - R&D mostly for product development, localization, some re-engineering (e.g. to cut manufacturing cost)
- Hiring from U.S. (including returnees): for management roles, not for company research
 - Foreign R&D labs in China: active programs with Chinese universities, hire recent graduates
- Little direct interaction between Chinese companies and U.S. universities

September 2007

China innovation system: Distinctive features - 2

Government money	Apparently still not trying to obtain leverage from matching funds; not concerned with promoting cooperation
Employment	High mobility, but industry is probably still much less important market for Ph.D.s than in U.S.
Patterns of	Robust spin-out of start-up companies, which the university may own !!
transfer	No famous start-up companies from universities (yet), but Lenovo came from CAS Institute of Computing Technology

September 2007

Highlighting some differences

	U.S.	China	Japan
Government funding	Promotes univ-industry symbiosis	Separate systems for funding university and industry	
Industry wants < top universities	Real time partnerships	Research outsourcing	
National labs	Special purpose	Historically dominant	Leverage industry R&D
University start-ups	Robust		Still weak
Innovation goal	Sustained competitiveness, but specifics vary according to the national economy		

September 2007

Looking ahead to the rest of the series

Several sessions on industry case studies

Will look at a government policy or two

- E.g. Japan: "Innovation 25"
- Regional industry conditions
 - Next week: Prof. Lin Xu on "The Diversity of Start-Ups in China"

Some sources used

Chen, Kun and Martin Kenney. 2005. "Universities/Research Institutes and Regional Innovation Systems: The Cases of Beijing and Shenzhen." Presented at "Universities as Drivers of the Urban Economies in Asia" sponsored by the World Bank and Social Research Council (May 24-25, 2005).

- Rosenberg, Nathan, and Richard Nelson. 1996. "The Roles of Universities in the Advance of Industrial Technology." In Rosenbloom and Spencer, eds., <u>Engines of Innovation</u>, Boston: Harvard Busines School Press, pp. 87-110.
- Stanford University School of Engineering Annual Report Financials, FY 2005-06, available at <http://soe.stanford.edu/AR05-06/factsfinancials.html>

September 2007