EE-402A
Topics in International Technology Management
Thursday, October 4, 2012

The Greening of Transportation: Will Asia Lead the Way?

Richard B. Dasher, Ph.D.

Director, US-Asia Technology Management Center
Executive Director, Center for Integrated Systems
Consulting Professor, Stanford University

Outline of today's talk

- Welcome
 - For Stanford students: requirements for credit
- Green technologies in transportation
 - From materials to systems to usage
 - The current situation in major Asia markets
- Background
 - Some areas in which Asia has been taking the lead
- Some Asia policies and investment plans
- Discussion

Welcome to everyone!

- Weekly <u>public</u> lecture / panel discussion series presented by the US-Asia Technology Management Center (School of Engineering)
 - Every Thursday, through 12/06/2012
 - Additional support from The Miner Foundation (Thank you!)
 - See < < http://asia.stanford.edu > for upcoming session info
- Mission: guest speakers bring up-to-date view of <u>how business</u> and technology intersect in an important domain for growth
 - Especially: try to bring in fresh information from Asia
 - Previous: (slides at <http://asia.stanford.edu/?page_id=101>
 - Mobile Internet businesses and technologies in Asia (2011)
 - Asia technology management in energy and cleantech (2010)
 - Technology strategies in Asia business (outsourcing, IP, corporate VC, etc. – 2009)
 - Global technology development: the changing role of Asia (2008)

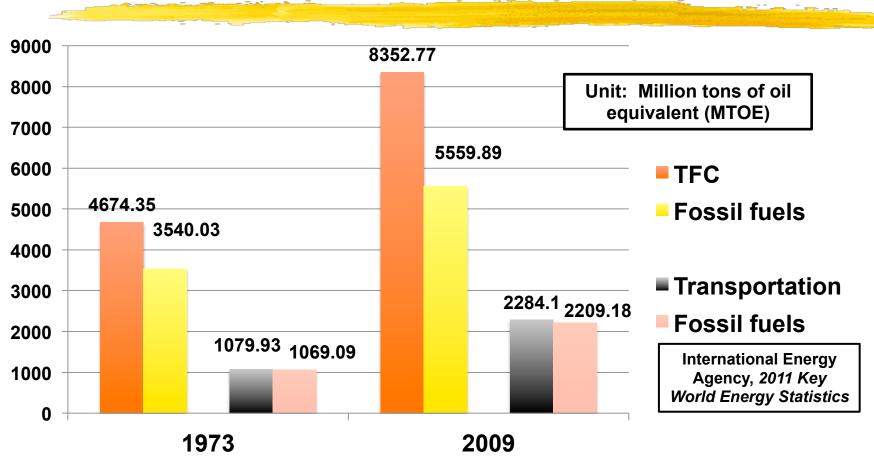
Special note

- (Depending on how you count) this autumn represents the 20th Anniversary of these seminars
 - Autumn 1992: "EE-392A" special seminar series by Prof. Fumio Kodama (then Univ. of Tokyo) on Japanese technology management
 - Thematic focus each year since autumn 1993 ("Advanced Manufacturing")
 - Some highlights:
 - First North American presentation of blue LED by Shuji Nakamura
 - First North American presentation of joint Toshiba-IBM reflective LCD projector
 - Three series later compiled into books
- Addition of spring technology survey seminars since spring 1995 ("Flat Panel Displays")
 - Currently morphing into smaller series for first-year Ph.D. students
- Addition of EE-402T "Entrepreneurship in Asian High-Tech Industries" from Spring 2003

Series available for credit to Stanford students

- Register for EE-402A
 "Topics in International Technology Management"
 - No pre-requisites, open to all undergrads and graduate students
 - May be repeated in future years for credit; each series is separate (different content)
- Casual attendance by students welcome
- Open to the public with no registration requirements
- Light refreshments afterward
 - Meet the speaker, meet each other

EE-402A Requirements for Credit

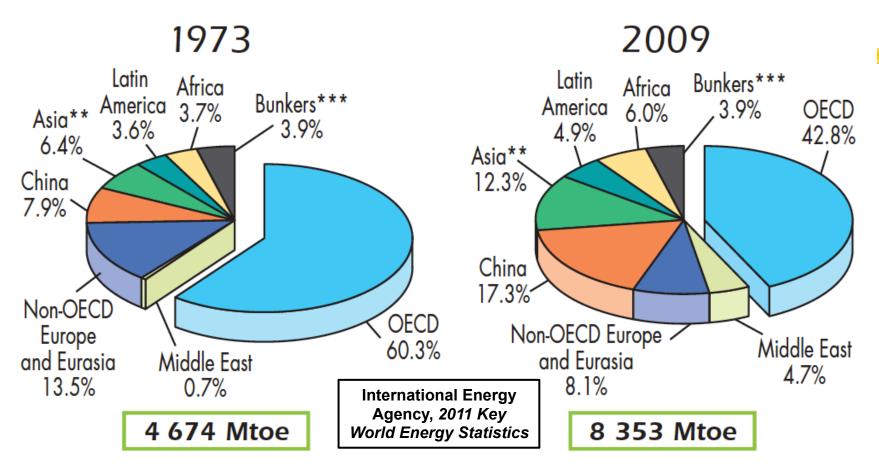

- Obtain <u>Syllabus</u> for official statement of credit requirements
 - These MAY BE DIFFERENT REQUIREMENTS THAN FOR OTHER SEMINARS at Stanford
 - A. On-site attendance at seven (7) of nine (9) sessions
 - Requirement A waived for SCPD students
 - Today fill out survey, then weekly sign-up sheet at auditorium
 - B. Submit a comment / summary each week for eight (8) of the nine (9) sessions
 - Send comment by email within two weeks of the session
 - To me (Prof. Dasher) <rdasher at stanford dot edu>
 - Always cc to Tiphanie <gammontd at stanford dot edu>
 - Comment must provide evidence that you watched the session
 - Contact Dasher by email a.s.a.p. if you may have trouble fulfilling requirements

Request to everyone (visitors and students) for today (10/04)

- Please fill out incoming-survey and leave with Siejen, Tiphanie, or me
 - Even if you have attended our series in the past
- For students registering for credit, the survey is your on-site attendance record for 10/04/2012
 - In addition, you will need to submit your comment / summary about the content of this session within two weeks

Green technologies in transportation

World energy consumption 1973 vs 2009

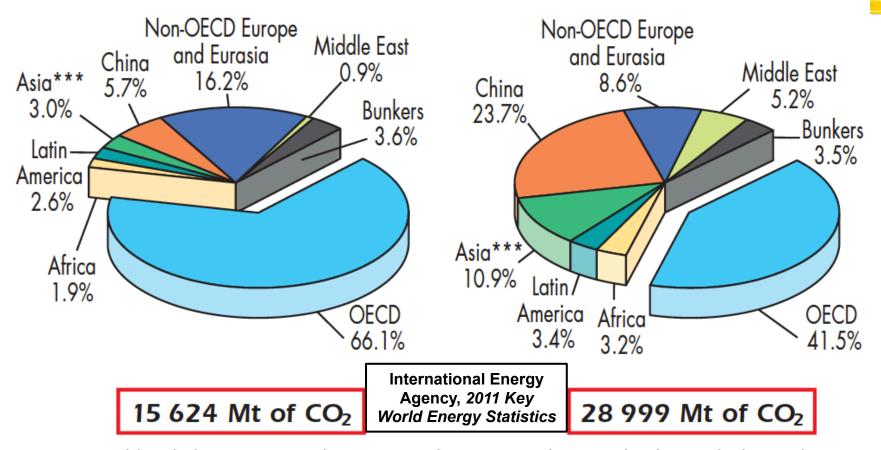


Fossil fuels include coal, crude oil, oil products, natural gas and exclude biofuels

The transportation sector in the growth of energy and fossil fuel consumption

- Total final energy consumption (TFC) worldwide grew 78.8% between 1973 & 2009
 - Total fossil fuel consumption grew 57.1%
- Transportation sector final energy consumption worldwide grew 111.5% between 1973 & 2009
 - Fossil fuel consumption in transportation grew 106.6%
 - Transportation accounts for about 60% of all petroleum consumption (including gasoline, jet fuel, diesel, etc.)
- Currently, transportation sector = about 28% of all TFC in U.S.
 - ~ about 20% of all TFC in China

Total final energy consumption (TFC)


*Data prior to 1994 for biofuels and waste final consumption have been estimated.

**Asia excludes China.

^{***}Includes international aviation and international marine bunkers.

Regional shares of world CO₂ emissions

^{*}World includes international aviation and international marine bunkers, which are shown together as Bunkers. **Calculated using the IEA's energy balances and the Revised 1996 IPCC Guidelines. CO₂ emissions are from fuel combustion only. ***Asia excludes China.

China and (other) Asia in energy consumption and CO₂ emission growth

World energy consumption

- China share grew from 7.9%
 in 1973 to 17.3% in 2009 (i.e. share grew by 119.0%)
- Other Asia countries' share grew from 6.4% in 1973 to 12.3% in 2009 (i.e. share grew by 92.1%)
- In 2009, Asia including China accounted for 29.6% of world energy consumption

CO₂ emissions

- China share grew from 5.7% in 1973 to 23.7% in 2009 (share grew by 315.8%)
- Other Asia countries' share grew from 3.0% in 1973 to 10.9% in 2009 (i.e. share grew by 263.3%)
- In 2009, Asia including China accounted for 34.6% of CO₂ emissions

The rise of transportation in China

- In 2009, China surpassed the U.S. to become the world's largest automobile producer and market
 - 170 million automobiles on roads in China (end 2009),
 expected to *add* 220 million *new* automobiles by 2020
- ◆ Total freight transport (land, sea, air) in China grew from 4,432,050 million ton (metric) - kilometers (2000) to 11,030,049 million ton - km (2008) = 148.9% growth
 - Compare: U.S. total freight transport grew from 4,328,750 million ton (U.S.) - miles (2000) to 4,647,112 million ton - miles (2008) = 7.4% growth

"Green technologies"

- A relative term...
- The use of technologies, processes, or approaches (e.g. to supply chain management) that reduce negative environmental impact or improve environmental sustainability in comparison to traditional technologies or approaches
- Compare: environmental technologies, cleantech
- In transportation: major concerns have revolved around greenhouse gas (GHG) reductions and energy reduction

Green Technologies in Transportation

Vehicles

- Electric automobiles, buses, bicycles, ships, airplanes ...
- Improve vehicle efficiency through use of IT, new power train technologies, new materials
- Emission scrubbing

Fuels and energy storage

Also include battery technologies as well as biofuel, fuel-cell (H₂)

Total systems

- "Intelligent transportation systems" also may impact "use" below
 - Networks of sensors on roads & in vehicles, plus advanced computing
- Logistics for air transport
 - Improve efficiency on the ground as well as in the air

Systems use

 Encourage shift from POV to public transportation, reduce traffic jams, suggestion of more efficient transport routes

Asia government policies reflect acute awareness of need for green transportation

A few selected examples

- China by 2020:
 - Increase hybrid and EV autos to 15% of total production
 - Double long-distance high speed rail
 - Beijing metro rail to 660 km by 2015, 1,000 km by 2020
- South Korea by 2020
 - Increase rail share of total transportation from 8.7% to 15%
 - Increase bicycle share from 1.2% to 15%
- Malaysia
 - Already in Phase 2 of "EV Roadmap" with pilot projects by Proton, Mitsubishi, Nissan underway
 - Promoting discussion of standards for EV charging

Some areas in which Asia has already taken the lead: high speed rail service

Country	Service	Service began	Operating speed (current use)	Design speed
Japan	Shinkansen	1964	300 km/hr (N700)	330 km/hr (N700)
France	TGV	1981	300 – 320 km/hr	320 km/hr
U.S.	Acela	2000	241 km/hr	266 km/hr
S. Korea	KTX	2004	305 km/hr	330 km/hr
China	CRH	2007	~ 320 km/hr (CRH380)	380 km/hr (CRH380)
Taiwan	THSR	2007	300 km/hr	300 km/hr

Why is high speed rail "green"? More efficient movement of passengers than automobiles, sources of energy may be greener than for airplanes

October 4, 2012

Richard B. Dasher, Stanford University

Some areas in which Asia has taken the lead – EV technologies

- Most automobiles in the 1800's (U.S. and Europe) were electric
 - No infrastructure outside cities
 - Gasoline-powered cars became dominant after self-starter invented (1913)
- GM began production of the EV-1 in 1996
- Toyota unveiled the Prius hybrid at Tokyo Auto Show (1997)
- Nissan unveiled Prairie Joy EV (1997) -- first ever with Lithium ion battery; Leaf went commercial from 2009
- Honda fuel cell hybrid EV (FCHV) from 2008 available for leasing in L.A.

Some reasons to watch Asia for green transportation

- Acute awareness of the need to "go green"
- R&D strengths
 - Complex hardware-and-software systems, including robotics
 - Materials e.g. carbon fiber composites, CFRP
 - Battery technologies
- Business experience with new transportation technologies
 - E.g. ANA was first airline to take delivery of Boeing 787
 - Evergreen Lines shipping (orig. base in Taiwan)
 - Maglev commercial line in Shanghai
 - JR development / adoption of Suica paperless ticketing system

What's important for the U.S. side?

- Learn from Asia examples
 - What would a high speed rail system look like in the Northeast Corridor?
- Watch for early development of technology standards
 - E.g. for electric vehicle charging: Europe and Japan are probably more active than U.S. in general
- Global market opportunities (in Asia or other regions, with Asia business or technology partners, etc.) and global competition
 - How will the EV market in China change as domestic production increases
- Look to future (next generation beyond current cool things)
 - Maglev, radically new freight transport ideas, etc.

A few upcoming sessions

- October 11 Mr. Osamu Onodera, Silicon Valley representative of NEDO: Japanese government policies and investments in green transportation (e.g. EV to smart grid)
- October 18 Prof. Hiroshi Shimizu, CEO of SIMDrive: a new in-wheel electric motor for EVs and also existing vehicle conversion
- October 25 Prof. Lin Zhang, Tsinghua University: intelligent transportation systems research for Beijing
- November 1 Mr. Toshiyuki Kondo, CEO of Toray Composites America: carbon fiber materials for aircraft and automobile applications
- Subsequent sessions will discuss emissions scrubbing, maritime transportation, air transportation systems, etc.