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Air Pollution in Big Cities 



Difference of Opinion 



We don’t understand the city 

q Challenges of urban sensing 
§  Delivery of gigantic volume of data from heterogeneous sensors 
§  Coverage of large areas with high spatial resolution 

 



Design Objectives 

q Large Coverage Area (Beijing: approx. 600 km2) 

q Scalability (number of sensors and data traffic) 
q Versatility in applications 
q Affordable deployment cost 



The System Architecture and  
the Meats for Research 

q  System Architecture 
¶  Sensors (road side or on-

board) 
¶  Carriers (taxi and buses) 
¶  Base station/Sinks (road side) 
 

q  Sensing Meets Mobility 
¶  Mobility improves the 

communication capacity 
¶  Mobility increases the system 

coverage 



System Deployment in Beijing 

context acquisition (local data collection and context sharing),
context management (filtering, composition and storage), and
context utilization (discovery, adaptation and annotation).

III. PROTOTYPE AND IMPLEMENTATION

Although many smart phones nowadays are powerful
enough, still they cannot support environmental urban sens-
ing. They are usually in lack of specific sensors to mon-
itor weather (temperature, humidity etc.) and air condition
(CO,SO2,H2S, inhalable particles etc.) because of the vol-
ume, weight and cost constraints. We design and develop a
prototype that embedded with specific sensors to perform en-
vironmental sensing, especially for the temperature, humidity
and carbon monoxide information.

Fig. 1. Pervasive Urban Sensing Prototype (Left: sensing platform, size
15cm�40cm, Right: environmental sensing module, size 10cm�15cm)

Fig. 2. Deployment on Tour Buses

The prototype is designed to be equipped on vehicles, with
each device including two inter-connected parts (Fig.1). One
is environmental sensing module, which is put on the roof of
autos, including temperature, humidity and carbon monoxide
sensors, as well as a short range RF transceiver. The other is
sensing platform, which is put inside, including an ARM-11
based main board, GPS/GPRS module, 3-axis accelerometers,
battery and DC adaptor that convert 12V DC from autos to
5V DC that is compatible with inside modules.

The processor is Samsung S3C6410 with frequency
533MHz, 256M RAM and 1G Flash. All the extended modules
use serial ports to communicate with main board. All the
sensors are on-the-shelf products with factory calibration.
Embedded version of Linux OS(v2.6.36) is used as operation
system on main board, with Qt graphical system.

Sensing task is performed as a real-time application that
schedules the working pattern of GPS, accelerometers and
other sensors. An independent thread is kept for short range
communication with nearby devices.

We have implemented this prototype on 15 tour buses in
Beijing (Fig.2). The testbed has been running for three month.
A rich information dataset is obtained as first-hand information
about city dynamics of Beijing.

IV. A MANIFOLD LEARNING FRAMEWORK ON CITY
DYNAMICS STUDY

A. Classical Regularization Theory in Supervised Learning
Supervised learning are described as an inverse problem, in

the sense that its formulation builds on knowledge obtained
from examples of the corresponding direct problem, which
involves underlying physical laws that are unknown. To be
specific, let the set of input-output data(i.e. the training set)
be described by

Input signal:xi ⌅ Rm, i = 1, 2, . . . N (1)
Desired response:di ⌅ R, i = 1, 2, . . . N (2)

The input is m dimensional vector, while the output is
assumed to be one dimensional. Let the proximating function
be denoted by F (x).

Actually, the information of a training sample is ordinarilly
not sufficient by itself to reconstruct the unknown input-
output mapping uniquely. To overcome this serious problem of
overfitting by a learning machine, a method of regularization is
used to restrict the solution of the hypersurface reconstruction
problem to compact subsets by minimizing the augmented cost
function

�(F ) = �s(F ) + ��c(F ). (3)

Here, �s(F ) denotes empirical cost function. For the least-
square estimator,

�s(F ) =
1

2

N⇤

i=1

�
di � F (xi)

⇥2
. (4)

While �c(F ) denotes regularizer, which is dependent on
certain geometric properties of the approximating fuction
F (xi).

�c(F ) =
1

2
⇧DF⇧2, (5)

where D is a linear differential operator.
Obviously, the regularization parameter � plays a central

role in the regularization theory. The limiting case � ⇥ 0
implies that the problem is unconstrained, with the solution
F�(x) being completely determined from the examples. The
other limiting case, � ⇥ ⇤, on the other hand, implies
that the examples are unreliable. In practical applications,
the regularization parameter � is assigned a value somewhere
between these two limiting conditions. The regularizer �c(F )
can be viewed as model complexity-penalty function, i.e.
the influence of which on the final solution is controlled by

context acquisition (local data collection and context sharing),
context management (filtering, composition and storage), and
context utilization (discovery, adaptation and annotation).

III. PROTOTYPE AND IMPLEMENTATION

Although many smart phones nowadays are powerful
enough, still they cannot support environmental urban sens-
ing. They are usually in lack of specific sensors to mon-
itor weather (temperature, humidity etc.) and air condition
(CO,SO2,H2S, inhalable particles etc.) because of the vol-
ume, weight and cost constraints. We design and develop a
prototype that embedded with specific sensors to perform en-
vironmental sensing, especially for the temperature, humidity
and carbon monoxide information.

Fig. 1. Pervasive Urban Sensing Prototype (Left: sensing platform, size
15cm�40cm, Right: environmental sensing module, size 10cm�15cm)

Fig. 2. Deployment on Tour Buses

The prototype is designed to be equipped on vehicles, with
each device including two inter-connected parts (Fig.1). One
is environmental sensing module, which is put on the roof of
autos, including temperature, humidity and carbon monoxide
sensors, as well as a short range RF transceiver. The other is
sensing platform, which is put inside, including an ARM-11
based main board, GPS/GPRS module, 3-axis accelerometers,
battery and DC adaptor that convert 12V DC from autos to
5V DC that is compatible with inside modules.

The processor is Samsung S3C6410 with frequency
533MHz, 256M RAM and 1G Flash. All the extended modules
use serial ports to communicate with main board. All the
sensors are on-the-shelf products with factory calibration.
Embedded version of Linux OS(v2.6.36) is used as operation
system on main board, with Qt graphical system.

Sensing task is performed as a real-time application that
schedules the working pattern of GPS, accelerometers and
other sensors. An independent thread is kept for short range
communication with nearby devices.

We have implemented this prototype on 15 tour buses in
Beijing (Fig.2). The testbed has been running for three month.
A rich information dataset is obtained as first-hand information
about city dynamics of Beijing.

IV. A MANIFOLD LEARNING FRAMEWORK ON CITY
DYNAMICS STUDY

A. Classical Regularization Theory in Supervised Learning
Supervised learning are described as an inverse problem, in

the sense that its formulation builds on knowledge obtained
from examples of the corresponding direct problem, which
involves underlying physical laws that are unknown. To be
specific, let the set of input-output data(i.e. the training set)
be described by

Input signal:xi ⌅ Rm, i = 1, 2, . . . N (1)
Desired response:di ⌅ R, i = 1, 2, . . . N (2)

The input is m dimensional vector, while the output is
assumed to be one dimensional. Let the proximating function
be denoted by F (x).

Actually, the information of a training sample is ordinarilly
not sufficient by itself to reconstruct the unknown input-
output mapping uniquely. To overcome this serious problem of
overfitting by a learning machine, a method of regularization is
used to restrict the solution of the hypersurface reconstruction
problem to compact subsets by minimizing the augmented cost
function

�(F ) = �s(F ) + ��c(F ). (3)

Here, �s(F ) denotes empirical cost function. For the least-
square estimator,

�s(F ) =
1

2

N⇤

i=1

�
di � F (xi)

⇥2
. (4)

While �c(F ) denotes regularizer, which is dependent on
certain geometric properties of the approximating fuction
F (xi).

�c(F ) =
1

2
⇧DF⇧2, (5)

where D is a linear differential operator.
Obviously, the regularization parameter � plays a central

role in the regularization theory. The limiting case � ⇥ 0
implies that the problem is unconstrained, with the solution
F�(x) being completely determined from the examples. The
other limiting case, � ⇥ ⇤, on the other hand, implies
that the examples are unreliable. In practical applications,
the regularization parameter � is assigned a value somewhere
between these two limiting conditions. The regularizer �c(F )
can be viewed as model complexity-penalty function, i.e.
the influence of which on the final solution is controlled by

•  Sensors deployed on tour buses in Beijing 
•  CO, 3-axis Acceleration, GPS, Temperature, Humidity, Light 

•  Location data collected from 27,000 taxi cabs 



Low cost COTS techniques 

Low cost COTS techniques V2V 
Specs 

System Layers 

DTN Routing with consideration of mobility pattern 
Scalable and compatible 

Application specific information processing 

PHY 

MAC 

NET 

APP 



802.15.4c 

802.15.4c + 
 Improved Neighbor Discovery 

802.11p 

The Network Layer 

Delay Constrained  
Information Dissemination 

PHY 

MAC 

NET 

APP 
Application specific information processing 



An infrastructure-free network 

§  Using Vehicular to Relay Information to Sink(s) 
§  Delay Tolerant Networks 

§  Pros: 
§  Vehicle has constant electric supply 
§  Storage on-board is cheap 
§  The mobility pattern are predictable 

§  Cons & Challenges: 
§  Frequently changed network topology 
§  Limited inter-contact duration and local capacity 
§  Density fluctuation over time and space 
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Setup of Problem 
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§  Network Elements 
§  Sensors 
§  Mobile Relays 
§  Sink 

§  Channel Capacity is 
the Major Constraint 

sensor

 

Base-
station

Mobile Nodes cell



Existing Protocols 

§  Existing Routing algorithms  
§  Routing based on replication (Epidemic, SW) 

§  Increase delivery possibility within delay constrain 
§  Require tremendous cost of network resource 

§  Routing with network resource constraint (MaxProp, Rapid) 
§  Optimize performance with resource constrain 
§  Perform suboptimal as density fluctuates 

§  Routing with density adaptive nature (DA-SW, ECAM) 
§  Optimize performance as density changes 
§  Not consider capacity limitation in VANET 

12 



DAWN: Utility-based Heuristics 

13 

§  Single Packet Utility Function 
§  A packet company is the totality of all the copies of a 

packet s 
§  The delivery of the packet from source to the base 

station need to be within a time limit 
§  Us(t)=P{Ts(t)<TMAX} 

§  System Utility Function 
§  Average utility function values over all the packet 

companies 

 
 
 



The Protocol Rationale 

14 

§  Trade-off in the Duplication Behavior of Packets 
§  Increase the probability of successful delivery / System Utility 
§  Replications are subject to channel constraint 
§  We need to find the best local replication strategy, but it depends 

on the future. 

§  Heuristics of the protocol 
§  Packet utility gain from replication: 

13

IV. DAWN

DAWN models DTN routing as a utility-based resource allocation problem. A packet is delivered by

replicating itself until a copy reaches the base station. The design goal of DAWN is to maximize the

probability of packets to be delivered to the base station before deadline, which is indicated as the system

utility value at time TMAX . As is proved in Section III, to serve the global optimization, DAWN adjusts

the input of each cell using the Blind Allocation so as to maximize the cell utility incremental function.

The DAWN protocol executes when nodes are in the same cell (which indicates the nodes are in each

others’ radio communication range). Each node calculates the assigned input quota of itself in this cell.

It then broadcasts the packets that will result in highest utility incremental values. As stated above, the

optimal input K is decided by the channel. Given K, each node in a certain cell is assigned with K
λl

input,

in which λl indicates the mobile node number in the cell. This number can be estimated by the history

encounters of the node. When local density is low and the node is assigned with enough input, all the

transfer requirements can be satisfied. In this case, the forward strategy is almost the same as Epidemic,

which has been proved to be optimal in none capacity constraint situation. When local density increases

and the assigned input is not enough for the node, packets that own highest utility incremental values will

be transmitted with higher priority.

A. Cell Density Estimation

Since the mobile node density is slowly varying with time, nodes can estimate the local node density

according to their encountering history information. Each node may learn the node number in a cell after

packet broadcasting by calculating the different source nodes it has communicated with. Local mobile

node number is estimated by each node as the average of this number in history encounters. In order

to guarantee the accuracy of density estimation, time window for estimation should be carefully chosen

according to network density variation feature.

B. Utility Value Estimation

The utility incremental value for packet s at time t in cell l is calculated as

∆Upt,ls = (1− Upts)(1− (1− Φl(TMAX − t))λl), (19)



First Arrival Time of Random Walk 
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distance=24

§  The interval between the time a mobile node start from cell i to the 
time that it first hits the base station 

§  No clean solution, even for the simple random walk on torus 
§  We use the empirical data from Beijing Taxi Database to estimate 

CDF of FPT in DAWN: Φi(t) 



The DAWN Heuristics 
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•  The total number of duplication is decided by the optimal 
input KOPT is decided by the cell capacity 

§  Packets with higher Utility Incremental Value will be 
duplicated on the broadcast channel with higher priority 

§  λi   : estimated by counting neighbor number 
§  Φi  : calculated based on the empirical data 
§  Us,t  : estimated locally 
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Fig. 2. Empirical CDF of FPT for Beijing Taxi

the Manhattan distance between the start and end points and
n indicates the number of mobile nodes. Fig.2 is the empirical
CDF of first passage time obtained from the Beijing taxi
trajectories of 27848 taxis traveling for 15 days from May 1st,
2009 till May 15th, 2009. The dataset include taxi trajectories
ranging from 36.759◦ to 40.023◦ latitude and 116.209◦ to
116.544◦ longitude, which covers the areas inside the fifth-ring
road in Beijing. We divider the area of about 25km × 33km
into 25× 33 cells with each cell about 1km× 1km. We then
analyze the first passage time of taxis stating from each cell
to the base station area, which is in the middle of the map.
The coordinates in Fig. 2 represent different cells in the map.

B. Optimization of Packet Utility

Suppose a mobile node in cell i possesses a copy of packet
(s0, t0) at time t, and decides to duplicate it via wireless link
to all the mobile nodes in the same cell. However, due to
competing of the wireless channel, the packet duplication is
subject to collision with probability p = K̃

Kt
, where Kt is the

total number of packets in the cell and K̃ is the actual number
of packets that get through. The expectation of increment of
the utility function of this packet company (s, t) is therefore

δUs,t = p[1− (1− Us,t)(1− Φi(TMAX − t+ t0))
λi ]

+(1− p)Us,t − Us,t

= p(1− Us,t)(1− (1− Φi(TMAX − t+ t0))
λi) (3)

Since all the duplications are performed independently in
each cell for all the packet companies, and the system utility
function is a convex function, by optimizing δUs,t, the system
utility function can be maximized. The actual number of
packets been broadcast in the cell is the function of the cell
input, K̃ = f(K) = K exp(− K

C0
), in which K is the total

number of packets that are trying to utilize the link. Plug f(K)
into Equation 3, we can derive the local utility incremental
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Fig. 3. Local Utility Incremental Function with Φi(TMAX) = 0.1, ..., 0.8

function as the function of K (Fig. 3), which is a convex
function.

δUs,t =
K exp(− K

C0
)

Kt
(1−Us,t)(1−(1−Φi(TMAX−t+t0))

λi).

(4)
From Equation 4 and Fig. 3 we can see that there exists

an optimal input Kopt for the utility incremental function
for different values of Φi(TMAX). The larger the value of
Φi(TMAX), the higher the incremental function will be, which
indicates that the utility function increases more if the packet
company is new. Also, δUs,t decreases as Us,t increases.

In a word, the Utility Incremental Function can be optimized
by adjusting cell input K. Suppose there are λi nodes in the
cell i, then each node should be assigned to contribute no
more than Kopt

λi
input. The parameter λi indicates the local

density of the cell. If the input of the cell is less than Kopt,
which means the maximum can not be reached, then all the
input requirements should be satisfied(since the incremental
function is monotone-increasing as K ≤ Kopt). If the cell
input is larger than Kopt, some input requirements should
be rejected. Packets that can result in higher δUs,t should be
assigned higher priority.

C. DAWN
DAWN models DTN routing as a utility-based resource

allocation problem. A packet is routed by replicating it until
a copy reaches the base station. The design goal of DAWN is
to maximize the probability of packets to be delivered to the
base station before deadline. To serve the global optimization,
DAWN adjusts the input of each local cell in order to maxi-
mize the local utility incremental function. The DAWN proto-
col executes when nodes are in the same cell(which indicates
the nodes are in each others radio range). Each node calculates
the assigned input quota of itself in this cell. It then broadcasts
the packets that will result in higher utility incremental values.
As stated above, the optimal input Kopt is decided by f(G).
Given Kopt, each node in a certain cell is assigned Kopt

λi
input,

in which λi indicates the local density of the cell. Such density



DAWN: The protocol 

q Density Adaptive Routing With Node Awareness 

17 

Estimate current cell’s 
node density 

Calculate the assigned 
input quota to each node 

•  Node density can be 
derived from node 
encounter history 

Replicate the 
packets according 
to the heuristics 

•  Packets with higher Utility gain 
will be replicated with high priority  

•  Quota for each node can 
be derived from the 
channel capacity and local 
node density 



Simulation on Manhattan Grids 
§  Simulation on Manhattan Grids 

§  Delivery Ratio vs Node Density 
§  Delivery Ratio vs Source Rate 

18 
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Fig. 6. Delivery Ratio v.s. Node Density in Manhattan Grid Simulation
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Fig. 9. Delivery Ratio v.s. Packet Generate Rate in Manhattan Grid Simulation



Beijing field data 

q Evaluate on the Beijing Taxi Dataset 
¶  Within the 5th ring road  

(26.3x33.5km) 
¶  Comm. range: 100m 
¶  Max Delay: 250-minute  
¶  May 1st ~ 30th, 2009  

(27,000 taxi in total)  
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Fig. 11. Delivery Ratio v.s. Taxi Number in Taxi Trajectory Simulation



Delivery Ratio Geo-fairness 
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802.15.4c 

802.15.4c + 
 Improved Neighbor Discovery 

802.11p 

The *Sensing* Layer 

Delay Constrained  
Information Dissemination 

Traffic Pattern, Air Pollution Monitoring 
Compressive Sensing Field Reconstruction 

PHY 

MAC 

NET 

APP 



Hot spots in Beijing 

q  Density-based Clustering (DBSCAN) 
q  2009-05-01, 8:00-9:00, 3250 Rides 
q  37 Hot zone identified 
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Ø  T2航站楼 
Ø  T3航站楼 
Ø  鸟巢 
Ø  西苑-颐和园 
Ø  中关村 
Ø  西直门 
Ø  东直门-三里屯 
Ø  西单 
Ø  北京西站 
Ø  天安门-前门 
Ø  王府井-北京站 
Ø  国贸 
Ø  刘家窑 
Ø  …… 
 



Origin-Destination Pair Cluster 

Density&based-OD-flow-clustering-
� 4&D-node-clustering-problem-
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1 � &/
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� DBSCAN-(Density&Based-Spatial-Clustering--of-Application-with-

Noise)-
� How-to-define-��#$?�@-?-
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as-

��#$ �*�*� �+�+ ;
�* : �+ +

+ 9 �* : �+ +
+

*
+

�* : �* + 9 �+ : �+ +
6-

Where,-
� '?> @-is-a-clustering-preference-factor,-indicating-the-

preference-to-long-trajectories.-
� When-' < � ��#$?@-is-a-relative-distance;-
� When-' ; � ��#$?@-is-an-absolute-distance.-
-

-
-
-

4-

Define the distance between two (O-D) pairs as 

5 a.m. ~ 6 a.m. 12 p.m. ~ 1 p.m. 11 p.m. ~ 12 a.m. 



Taxi Destination Estimation 

q  Can we forecast the drop-off location from the GPS data 
q  Learn a Markov chain from the dataset 
q  Good for mobile ads business 

Prediction Accuracy of 10 Hot Spots 
Weekday Average Accuracy: 92.32% 
Weekend Average Accuracy: 87.74% 



Traffic Pattern Mining 
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•  Sample density near an 
intersection within 15 minutes 

•  Colors indicate the number of 
sampled locations 

•  Traffic Pattern Mined from GPS Data 
•  The spatial resolution is much higher 

than the loop-based detection 
•  The granularity can be further 

improved to lane-level 
•  Using lifted space method to detect 

cars’ turning behavior at the 
intersection 



Most Applications: Field Gathering System 

q A physical field on G: 
q Distributed sensor nodes embedded in G to sample X(u,v,t) 
q Sensor nodes encode the data and transmit back to BS 
q Reconstruct  
q Objectives:  Minimal cost, minimal distortion 
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Exploiting the Sparsity in the Signal 
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From R. G. Baraniuk, Compressive sensing, IEEE Signal processing magazine July 2007 

Θ

Φ : measurement matrix    M    N 
Ψ : orthonormal basis    N     N 
Θ : Compressed Sensing reconstruction matrix   M     N 

y x α α=Φ =ΦΨ =Θ

×
×

×



Information is sparse in physical fields 
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Sample Reconstruction 

1 2( , ,..., )ny f x x x=

Temperature Distribution  



Distributed CS 

q Decompose sensing tasks to individual sensors 
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Distributed CS 

Tsinghua University 30 



Distributed CS 

Tsinghua University 31 



Performance Evaluation 
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q Temperature Field inside the 4th Ring Road (16x16 km) 
q Mobility Model: 

•  Manhattan Mobility Model 
•  City Section Mobility Model 
•  Real Taxi trajectory data 



Performance of the distributed CS 
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Random  Walk Random  Walk  with  
Section 

Taxi  Trajectories 

2( ) ( )bit distance×∑
Communication Cost:  



Traffic and Pollution Reconstruction 

Algorithm 1 Semi-supervised Manifold Learning
Input:

{Xi(t), di(t)}li=1 and {Xi(t)}Ni=l+1, which are respec-
tively labeled and unlabeled.
Parameter: spectral graph parameters � and ⇧2, ambient
regularization parameter ⇥A and intrinsic regularization
parameter ⇥I .

Output:
{di(t)}Ni=1 and approximating function F (x).

1: Construct the weighted undirected graph G with N nodes,
using:
Eq. (8) for identifying the adjacent nodes of the graph,
and
Eqs. (15) and (16) for computing the edge weights.

2: Choose kernel function k(x, ·) and using the training
sample, compute the Gram K = {k(xi,xj)}Ni,j=1

3: Compute the Laplacian matrix L of the graph G, using
Eqs. (9) and (11)

4: Compute the optimum coefficient vector a⇤, using Eq.
(19).

5: Use Eq. (17) to compute the optimized approximating
function F (X) and then the output {di(t)}Ni=1.

Algorithm 2 Spacial-Temporal Correlation
Input:

Semantic abstraction {dXi (t)}Ni=1 and {dYi (t)}Ni=1, sup-
pose these two stochastic processes are jointly wide sense
stationary.

Output:
Correlation Matrix Cov(X,Y) |i=1,2,...,N

1: For every area Ai, i ⌅ 1, 2, . . . , N , neglect the index i,
compute

⌅XY (⌃) =
E[(X(t)� µX)(Y (t+ ⌃)� µY )]

⇧X⇧Y
, (20)

2: Correlation Matrix Cov(X,Y) is a three dimensional
matrix with ⌅iXY (⌃) for each index i.

that in downtown (inside the 3rd ring road), the population
density is usually higher than that of other places, with the
west regions higher than the east regions in downtown. For
temporal analysis, we can see two explicit peaks in 12am and
8pm, which reflects the most active status of people.

Fig.5 shows the distribution and fluctuation of carbon
monoxide, which is an important index of air quality. In Fig.5
we can see an obvious hot zone, which indicates severe air
pollution in that region. We find that there are several chemical
factories in the south of Beijing city, which are reasonably
responsible for the local air pollution.

The correlation between different indexes is of much value,
if we could reveal the implicit relationship among different
phenomena. We uniformly divide the urban area into 100 sub-
area A1, A2, . . . , A100, each area (3km⇤3km) owns 9 blocks.

Fig. 4. Traffic Density in Beijing in 24 hours

Fig. 5. Carbon monoxide dynamics in Beijing in 24 hours
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Correlation between traffic and pollution 

In Fig.6 we show the learning results at selected area
(Dong Tie Ying Bridge, a 9 km2 region with center E116.43,
N39.856). The blue real line denotes traffic density, while red
dotted line denotes air quality. It is inferred that the air quality
is probably influenced by population density. Fig. 7 shows
the correlation between the two phenomena. A strong positive
peak is monitored at � = 3.4, with correlation coefficient
0.74. The correlation peak means a delayed dependence of air
quality to traffic density is resonably justified by our methods.
For the selected area, we can predict with confidence the air
pollution peak will occur about three hours later after the rush
hour.
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Fig. 6. A Semantic Abstract of Traffic and Carbon in 24 hours
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Fig. 7. Correlation of Traffic Density and Air quality at Selected Area

VI. CONCLUSION

In this paper, we report our work progress on urban dynam-
ics study. For crowd sourcing in urban area, different aspects
of technical improvement are discussed, such as compressed
sensing, urban channel test, delay tolerant networking, faulty
node isolation, context-aware framework, prototype and de-
ployment et al. The major contribution of this paper is Spatial-
Temporal Manifold Learning(STML) algorithm, which is a
novel framework to study the correlation of different urban
physical process. On one hand, STML reveals the intrinsic

structure of dataset by spectral graph theory to achieve dimen-
sion reduction, while using regularization theory to perform
noisy small dataset learning. On the other hand, STML makes
it possible for the spatial-temporal correlation analysis of two
urban phenomena relying not on the raw data, but the learning
results(semantic information). The effectiveness of STML is
justified by a case study of correlation analysis between traffic
density and air quality. Also, other interesting applications and
non-trivial results will be emerging to get better understanding
of our cities.
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VI. CONCLUSION

In this paper, we report our work progress on urban dynam-
ics study. For crowd sourcing in urban area, different aspects
of technical improvement are discussed, such as compressed
sensing, urban channel test, delay tolerant networking, faulty
node isolation, context-aware framework, prototype and de-
ployment et al. The major contribution of this paper is Spatial-
Temporal Manifold Learning(STML) algorithm, which is a
novel framework to study the correlation of different urban
physical process. On one hand, STML reveals the intrinsic

structure of dataset by spectral graph theory to achieve dimen-
sion reduction, while using regularization theory to perform
noisy small dataset learning. On the other hand, STML makes
it possible for the spatial-temporal correlation analysis of two
urban phenomena relying not on the raw data, but the learning
results(semantic information). The effectiveness of STML is
justified by a case study of correlation analysis between traffic
density and air quality. Also, other interesting applications and
non-trivial results will be emerging to get better understanding
of our cities.
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ALL THE EXAMPLES REQUIRE  
LARGE AMOUNT OF  
SENSORY DATA AND  
STRONG COMPUTATIONAL POWER 
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Smarter Planning 
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COMPUTING IS GETTING FASTER 
Performance Development 
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…AND CHEAPER 



IDEAS IN A NUTSHELL 

q Understanding urban dynamics is helpful to increase 
city life quality. 

q The moving vehicle can be an ideal carrier for sensing 
tasks. 

q Computation plays an important role in the information 
mining. 
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