

Vehicle-based Mobile Urban Sensing

The Technical Solution and Theoretical Problems

Zhang Lin, Associate Professor Department of Electronic Engineering, Tsinghua University, Beijing, China

Air Pollution in Big Cities

Difference of Opinion

We don't understand the city

□ Challenges of urban sensing

- Delivery of gigantic volume of data from heterogeneous sensors
- Coverage of large areas with high spatial resolution

Design Objectives

- Large Coverage Area (Beijing: approx. 600 km²)
- □ Scalability (number of sensors and data traffic)
- Versatility in applications
- □ Affordable deployment cost

The System Architecture and the Meats for Research

System Deployment in Beijing

Fig. 1. Pervasive Urban Sensing Prototype (Left: sensing platform, size $15 \text{cm} \times 40 \text{cm}$, Right: environmental sensing module, size $10 \text{cm} \times 15 \text{cm}$)

Fig. 2. Deployment on Tour Buses

- Sensors deployed on tour buses in Beijing
 - CO, 3-axis Acceleration, GPS, Temperature, Humidity, Light
- Location data collected from 27,000 taxi cabs

System Layers

The Network Layer

An infrastructure-free network

- Using Vehicular to Relay Information to Sink(s)
- Delay Tolerant Networks
 - Pros:
 - Vehicle has constant electric supply
 - Storage on-board is cheap
 - The mobility pattern are predictable
 - Cons & Challenges:
 - Frequently changed network topology
 - Limited inter-contact duration and local capacity
 - Density fluctuation over time and space

Setup of Problem

- Network Elements
 - Sensors
 - Mobile Relays
 - Sink
- Channel Capacity is the Major Constraint

Existing Protocols

- Existing Routing algorithms
 - Routing based on replication (Epidemic, SW)
 - Increase delivery possibility within delay constrain
 - Require tremendous cost of network resource
 - Routing with network resource constraint (MaxProp, Rapid)
 - Optimize performance with resource constrain
 - Perform suboptimal as density fluctuates
 - Routing with density adaptive nature (DA-SW, ECAM)
 - Optimize performance as density changes
 - Not consider capacity limitation in VANET

DAWN: Utility-based Heuristics

- Single Packet Utility Function
 - A packet company is the totality of all the copies of a packet s
 - The delivery of the packet from source to the base station need to be within a time limit
 - $U_s(t) = P\{T_s(t) \le T_{MAX}\}$
- System Utility Function
 - Average utility function values over all the packet companies

The Protocol Rationale

- Trade-off in the Duplication Behavior of Packets
 - Increase the probability of successful delivery / System Utility
 - Replications are subject to channel constraint
 - We need to find the best local replication strategy, but it depends on the future.
- Heuristics of the protocol
 - Packet utility gain from replication:

$$\Delta U p_s^{t,l} = (1 - U p_s^t) (1 - (1 - \Phi_l (T_{MAX} - t))^{\lambda_l})$$

First Arrival Time of Random Walk

- The interval between the time a mobile node start from cell *i* to the time that it first hits the base station
- No clean solution, even for the simple random walk on torus
- We use the empirical data from Beijing Taxi Database to estimate CDF of FPT in DAWN: $\Phi_i(t)$

The DAWN Heuristics

- The total number of duplication is decided by the optimal input $K_{\mbox{\scriptsize OPT}}$ is decided by the cell capacity
- Packets with higher Utility Incremental Value will be duplicated on the broadcast channel with higher priority

$$(1 - U_{s,t})(1 - (1 - \Phi_i(T_{MAX} - t + t_0))^{\lambda_i})$$

- λ_i : estimated by counting neighbor number
- Φ_{i} : calculated based on the empirical data
- $U_{s,t}$: estimated locally

DAWN: The protocol

Density Adaptive Routing With Node Awareness

Simulation on Manhattan Grids

- Simulation on Manhattan Grids
 - Delivery Ratio vs Node Density
 - Delivery Ratio vs Source Rate

Beijing field data

Evaluate on the Beijing Taxi Dataset

- ☆ Within the 5th ring road (26.3x33.5km)
- ☆ Comm. range: 100m
- ☆ Max Delay: 250-minute
- ☆ May 1st ~ 30th, 2009

Delivery Ratio Geo-fairness

The *Sensing* Layer

Hot spots in Beijing

- Density-based Clustering (DBSCAN)
- □ 2009-05-01, 8:00-9:00, 3250 Rides
- □ 37 Hot zone identified

Origin-Destination Pair Cluster

Define the distance between two (O-D) pairs as

$$dist(O_1D_1, O_2D_2) = \frac{\left(\left|\left|O_1 - O_2\right|\right|_2^2 + \left|\left|D_1 - D_2\right|\right|_2^2\right)^{\frac{1}{2}}}{\left(\left|\left|O_1 - D_1\right|\right|_2 + \left|\left|O_2 - D_2\right|\right|_2\right)^{\alpha}}$$

Taxi Destination Estimation

- Can we forecast the drop-off location from the GPS data
- Learn a Markov chain from the dataset
- Good for mobile ads business

Prediction Accuracy of 10 Hot Spots (Hot Spot 1~10) Weekday Average: 92.32% Weekend Average: 87.74% 0.8 0.6 Accuracy 04 0.2 0 2 3 5 6 7 8 9 10 4 Hot Spot

Prediction Accuracy of 10 Hot Spots Weekday Average Accuracy: <u>92.32%</u> Weekend Average Accuracy: <u>87.74%</u>

Traffic Pattern Mining

 Colors indicate the number of sampled locations

- Traffic Pattern Mined from GPS Data
- The spatial resolution is much higher than the loop-based detection
- The granularity can be further improved to lane-level
- Using lifted space method to detect cars' turning behavior at the intersection

Most Applications: Field Gathering System

- **A physical field on** G: X(u,v,t)
- \Box Distributed sensor nodes embedded in G to sample X(u,v,t)
- □ Sensor nodes encode the data and transmit back to BS □ Reconstruct $\hat{X}(u, v, t)$
- □ **<u>Objectives</u>**: Minimal cost, minimal distortion

Exploiting the Sparsity in the Signal

 $\Phi: measurement matrix M \times N$ $\Psi: orthonormal basis N \times N$ $\Theta: Compressed Sensing reconstruction matrix M \times N$

From R. G. Baraniuk, Compressive sensing, IEEE Signal processing magazine July 2007

Information is sparse in physical fields

Temperature Distribution

Distributed CS

Decompose sensing tasks to individual sensors

Distributed CS

Tsinghua University

Distributed CS

Performance Evaluation

- Temperature Field inside the 4th Ring Road (16x16 km)
 Mobility Model:
 - Manhattan Mobility Model
 - City Section Mobility Model
 - Real Taxi trajectory data

Performance of the distributed CS

Traffic and Pollution Reconstruction

Fig. 4. Traffic Density in Beijing in 24 hours

Fig. 5. Carbon monoxide dynamics in Beijing in 24 hours

Correlation between traffic and pollution

ALL THE EXAMPLES REQUIRE LARGE AMOUNT OF SENSORY DATA AND STRONG COMPUTATIONAL POWER

COMPUTING IS GETTING FASTER

...AND CHEAPER

IDEAS IN A NUTSHELL

- Understanding urban dynamics is helpful to increase city life quality.
- The moving vehicle can be an ideal carrier for sensing tasks.
- Computation plays an important role in the information mining.

ACKOWLEDGEMENTS

Thanks

For information and datasets : <u>http://sensor.ee.tsinghua.edu.cn</u>

